Timothy Niven


2020

pdf bib
Measuring Alignment to Authoritarian State Media as Framing Bias
Timothy Niven | Hung-Yu Kao
Proceedings of the 3rd NLP4IF Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda

We introduce what is to the best of our knowledge a new task in natural language processing: measuring alignment to authoritarian state media. We operationalize alignment in terms of sociological definitions of media bias. We take as a case study the alignment of four Taiwanese media outlets to the Chinese Communist Party state media. We present the results of an initial investigation using the frequency of words in psychologically meaningful categories. Our findings suggest that the chosen word categories correlate with framing choices. We develop a calculation method that yields reasonable results for measuring alignment, agreeing well with the known labels. We confirm that our method does capture event selection bias, but whether it captures framing bias requires further investigation.

2019

pdf bib
Probing Neural Network Comprehension of Natural Language Arguments
Timothy Niven | Hung-Yu Kao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We are surprised to find that BERT’s peak performance of 77% on the Argument Reasoning Comprehension Task reaches just three points below the average untrained human baseline. However, we show that this result is entirely accounted for by exploitation of spurious statistical cues in the dataset. We analyze the nature of these cues and demonstrate that a range of models all exploit them. This analysis informs the construction of an adversarial dataset on which all models achieve random accuracy. Our adversarial dataset provides a more robust assessment of argument comprehension and should be adopted as the standard in future work.

pdf bib
Fill the GAP: Exploiting BERT for Pronoun Resolution
Kai-Chou Yang | Timothy Niven | Tzu Hsuan Chou | Hung-Yu Kao
Proceedings of the First Workshop on Gender Bias in Natural Language Processing

In this paper, we describe our entry in the gendered pronoun resolution competition which achieved fourth place without data augmentation. Our method is an ensemble system of BERTs which resolves co-reference in an interaction space. We report four insights from our work: BERT’s representations involve significant redundancy; modeling interaction effects similar to natural language inference models is useful for this task; there is an optimal BERT layer to extract representations for pronoun resolution; and the difference between the attention weights from the pronoun to the candidate entities was highly correlated with the correct label, with interesting implications for future work.

pdf bib
Detecting Argumentative Discourse Acts with Linguistic Alignment
Timothy Niven | Hung-Yu Kao
Proceedings of the 6th Workshop on Argument Mining

We report the results of preliminary investigations into the relationship between linguistic alignment and dialogical argumentation at the level of discourse acts. We annotated a proof of concept dataset with illocutions and transitions at the comment level based on Inference Anchoring Theory. We estimated linguistic alignment across discourse acts and found significant variation. Alignment features calculated at the dyad level are found to be useful for detecting a range of argumentative discourse acts.

2018

pdf bib
NLITrans at SemEval-2018 Task 12: Transfer of Semantic Knowledge for Argument Comprehension
Timothy Niven | Hung-Yu Kao
Proceedings of the 12th International Workshop on Semantic Evaluation

The Argument Reasoning Comprehension Task is a difficult challenge requiring significant language understanding and complex reasoning over world knowledge. We focus on transfer of a sentence encoder to bootstrap more complicated architectures given the small size of the dataset. Our best model uses a pre-trained BiLSTM to encode input sentences, learns task-specific features for the argument and warrants, then performs independent argument-warrant matching. This model achieves mean test set accuracy of 61.31%. Encoder transfer yields a significant gain to our best model over random initialization. Sharing parameters for independent warrant evaluation provides regularization and effectively doubles the size of the dataset. We demonstrate that regularization comes from ignoring statistical correlations between warrant positions. We also report an experiment with our best model that only matches warrants to reasons, ignoring claims. Performance is still competitive, suggesting that our model is not necessarily learning the intended task.