Timothy Ossowski


2023

pdf bib
Retrieving Multimodal Prompts for Generative Visual Question Answering
Timothy Ossowski | Junjie Hu
Findings of the Association for Computational Linguistics: ACL 2023

Recent years have witnessed impressive results of pre-trained vision-language models on knowledge-intensive tasks such as visual question answering (VQA). Despite the recent advances in VQA, existing methods mainly adopt a discriminative formulation that predicts answers within a pre-defined label set, leading to easy overfitting on low-resource domains (e.g., medicine) and poor generalization under domain shift to another dataset. To tackle this limitation, we propose a novel generative model enhanced by multimodal prompt retrieval (MPR) that integrates retrieved prompts and multimodal features to generate answers in free text. Our generative model enables rapid zero-shot dataset adaptation to unseen data distributions and open-set answer labels across datasets. Our experiments on medical VQA tasks show that MPR outperforms its non-retrieval counterpart by up to 30% accuracy points in a few-shot domain adaptation setting.

2022

pdf bib
Utilizing Language-Image Pretraining for Efficient and Robust Bilingual Word Alignment
Tuan Dinh | Jy-yong Sohn | Shashank Rajput | Timothy Ossowski | Yifei Ming | Junjie Hu | Dimitris Papailiopoulos | Kangwook Lee
Findings of the Association for Computational Linguistics: EMNLP 2022

Word translation without parallel corpora has become feasible, rivaling the performance of supervised methods. Recent findings have shown the improvement in accuracy and robustness of unsupervised word translation (UWT) by utilizing visual observations, which are universal representations across languages. Our work investigates the potential of using not only visual observations but also pretrained language-image models for enabling a more efficient and robust UWT. We develop a novel UWT method dubbed Word Alignment using Language-Image Pretraining (WALIP), leveraging visual observations via the shared image-text embedding space of CLIPs (Radford et al., 2021). WALIP has a two-step procedure. First, we retrieve word pairs with high confidences of similarity, computed using our proposed image-based fingerprints, which define the initial pivot for the alignment. Second, we apply our robust Procrustes algorithm to estimate the linear mapping between two embedding spaces, which iteratively corrects and refines the estimated alignment. Our extensive experiments show that WALIP improves upon the state-of-the-art performance of bilingual word alignment for a few language pairs across different word embeddings and displays great robustness to the dissimilarity of language pairs or training corpora for two word embeddings.