Tingchen Fu


pdf bib
Learning to Express in Knowledge-Grounded Conversation
Xueliang Zhao | Tingchen Fu | Chongyang Tao | Wei Wu | Dongyan Zhao | Rui Yan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Grounding dialogue generation by extra knowledge has shown great potentials towards building a system capable of replying with knowledgeable and engaging responses. Existing studies focus on how to synthesize a response with proper knowledge, yet neglect that the same knowledge could be expressed differently by speakers even under the same context. In this work, we mainly consider two aspects of knowledge expression, namely the structure of the response and style of the content in each part. We therefore introduce two sequential latent variables to represent the structure and the content style respectively. We propose a segmentation-based generation model and optimize the model by a variational approach to discover the underlying pattern of knowledge expression in a response. Evaluation results on two benchmarks indicate that our model can learn the structure style defined by a few examples and generate responses in desired content style.

pdf bib
There Are a Thousand Hamlets in a Thousand People’s Eyes: Enhancing Knowledge-grounded Dialogue with Personal Memory
Tingchen Fu | Xueliang Zhao | Chongyang Tao | Ji-Rong Wen | Rui Yan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge-grounded conversation (KGC) shows great potential in building an engaging and knowledgeable chatbot, and knowledge selection is a key ingredient in it. However, previous methods for knowledge selection only concentrate on the relevance between knowledge and dialogue context, ignoring the fact that age, hobby, education and life experience of an interlocutor have a major effect on his or her personal preference over external knowledge. Without taking the personalization issue into account, it is difficult for existing dialogue systems to select the proper knowledge and generate persona-consistent responses.In this work, we introduce personal memory into knowledge selection in KGC to address the personalization issue. We propose a variational method to model the underlying relationship between one’s personal memory and his or her selection of knowledge, and devise a learning scheme in which the forward mapping from personal memory to knowledge and its inverse mapping is included in a closed loop so that they could teach each other. Experiment results show that our methods outperform existing KGC methods significantly on both automatic evaluation and human evaluation.

pdf bib
There Is No Standard Answer: Knowledge-Grounded Dialogue Generation with Adversarial Activated Multi-Reference Learning
Xueliang Zhao | Tingchen Fu | Chongyang Tao | Rui Yan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge-grounded dialogue (KGC) shows excellent potential to deliver an engaging and informative response. However, existing approaches emphasize selecting one golden knowledge given a particular dialogue context, overlooking the one-to-many phenomenon in dialogue. As a result, existing paradigm limits the diversity of knowledge selection and generation. To this end, we establish a multi-reference KGC dataset and propose a series of metrics to systematically assess the one-to-many efficacy of existing KGC models. Furthermore, to extend the hypothesis space of knowledge selection to enhance the mapping relationship between multiple knowledge and multiple responses, we devise a span-based variational model and optimize the model in a wake-sleep style with an ameliorated evidence lower bound objective to learn the one-to-many generalization. Both automatic and human evaluations demonstrate the efficacy of our approach.

pdf bib
Towards Efficient Dialogue Pre-training with Transferable and Interpretable Latent Structure
Xueliang Zhao | Lemao Liu | Tingchen Fu | Shuming Shi | Dongyan Zhao | Rui Yan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

With the availability of massive general-domain dialogue data, pre-trained dialogue generation appears to be super appealing to transfer knowledge from the general domain to downstream applications. In most existing work, such transferable ability is mainly obtained by fitting a large model with hundreds of millions of parameters on massive data in an exhaustive way, leading to inefficient running and poor interpretability. This paper proposes a novel dialogue generation model with a latent structure that is easily transferable from the general domain to downstream tasks in a lightweight and transparent way. Experiments on two benchmarks validate the effectiveness of the proposed model. Thanks to the transferable latent structure, our model is able to yield better dialogue responses than four strong baselines in terms of both automatic and human evaluations, and our model with about 22% parameters particularly delivers a 5x speedup in running time compared with the strongest baseline. Moreover, the proposed model is explainable by interpreting the discrete latent variables.