Tingting Ma


pdf bib
CoLaDa: A Collaborative Label Denoising Framework for Cross-lingual Named Entity Recognition
Tingting Ma | Qianhui Wu | Huiqiang Jiang | Börje Karlsson | Tiejun Zhao | Chin-Yew Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Cross-lingual named entity recognition (NER) aims to train an NER system that generalizes well to a target language by leveraging labeled data in a given source language. Previous work alleviates the data scarcity problem by translating source-language labeled data or performing knowledge distillation on target-language unlabeled data. However, these methods may suffer from label noise due to the automatic labeling process. In this paper, we propose CoLaDa, a Collaborative Label Denoising Framework, to address this problem. Specifically, we first explore a model-collaboration-based denoising scheme that enables models trained on different data sources to collaboratively denoise pseudo labels used by each other. We then present an instance-collaboration-based strategy that considers the label consistency of each token’s neighborhood in the representation space for denoising. Experiments on different benchmark datasets show that the proposed CoLaDa achieves superior results compared to previous methods, especially when generalizing to distant languages.

pdf bib
Disentangling Reasoning Capabilities from Language Models with Compositional Reasoning Transformers
Wanjun Zhong | Tingting Ma | Jiahai Wang | Jian Yin | Tiejun Zhao | Chin-Yew Lin | Nan Duan
Findings of the Association for Computational Linguistics: ACL 2023

This paper presents ReasonFormer, a unified reasoning framework for mirroring the modular and compositional reasoning process of humans in complex decision-making. Inspired by dual-process theory in cognitive science, the representation module (automatic thinking) and reasoning modules (controlled thinking) are decoupled to capture different levels of cognition. Upon the top of the representation module, the pre-trained reasoning modules are modular and professional in specific and fundamental reasoning skills (e.g., logic, simple QA, etc). To mimic the controlled compositional thinking process, different reasoning modules are dynamically activated and composed in both parallel and cascaded manners to control what reasoning skills are activated and how deep the reasoning process will be reached to solve the current problems. The unified reasoning framework solves multiple tasks with a single model, and is trained and inferred in an end-to-end manner. Evaluated on 11 datasets requiring different reasoning skills and complexity, ReasonFormer demonstrates substantial performance boosts, revealing the compositional reasoning ability. Few-shot experiments exhibit better generalization ability by learning to compose pre-trained skills for new tasks with limited data, and decoupling the representation module and the reasoning modules. Further analysis shows the modularity of reasoning modules as different tasks activate distinct reasoning skills at different reasoning depths.


pdf bib
TIARA: Multi-grained Retrieval for Robust Question Answering over Large Knowledge Base
Yiheng Shu | Zhiwei Yu | Yuhan Li | Börje Karlsson | Tingting Ma | Yuzhong Qu | Chin-Yew Lin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models (PLMs) have shown their effectiveness in multiple scenarios. However, KBQA remains challenging, especially regarding coverage and generalization settings. This is due to two main factors: i) understanding the semantics of both questions and relevant knowledge from the KB; ii) generating executable logical forms with both semantic and syntactic correctness. In this paper, we present a new KBQA model, TIARA, which addresses those issues by applying multi-grained retrieval to help the PLM focus on the most relevant KB context, viz., entities, exemplary logical forms, and schema items. Moreover, constrained decoding is used to control the output space and reduce generation errors. Experiments over important benchmarks demonstrate the effectiveness of our approach. TIARA outperforms previous SOTA, including those using PLMs or oracle entity annotations, by at least 4.1 and 1.1 F1 points on GrailQA and WebQuestionsSP, respectively. Specifically on GrailQA, TIARA outperforms previous models in all categories, with an improvement of 4.7 F1 points in zero-shot generalization.

pdf bib
Decomposed Meta-Learning for Few-Shot Named Entity Recognition
Tingting Ma | Huiqiang Jiang | Qianhui Wu | Tiejun Zhao | Chin-Yew Lin
Findings of the Association for Computational Linguistics: ACL 2022

Few-shot named entity recognition (NER) systems aim at recognizing novel-class named entities based on only a few labeled examples. In this paper, we present a decomposed meta-learning approach which addresses the problem of few-shot NER by sequentially tackling few-shot span detection and few-shot entity typing using meta-learning. In particular, we take the few-shot span detection as a sequence labeling problem and train the span detector by introducing the model-agnostic meta-learning (MAML) algorithm to find a good model parameter initialization that could fast adapt to new entity classes. For few-shot entity typing, we propose MAML-ProtoNet, i.e., MAML-enhanced prototypical networks to find a good embedding space that can better distinguish text span representations from different entity classes. Extensive experiments on various benchmarks show that our approach achieves superior performance over prior methods.

pdf bib
On the Effectiveness of Sentence Encoding for Intent Detection Meta-Learning
Tingting Ma | Qianhui Wu | Zhiwei Yu | Tiejun Zhao | Chin-Yew Lin
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent studies on few-shot intent detection have attempted to formulate the task as a meta-learning problem, where a meta-learning model is trained with a certain capability to quickly adapt to newly specified few-shot tasks with potentially unseen intent categories. Prototypical networks have been commonly used in this setting, with the hope that good prototypical representations could be learned to capture the semantic similarity between the query and a few labeled instances. This intuition naturally leaves a question of whether or not a good sentence representation scheme could suffice for the task without further domain-specific adaptation. In this paper, we conduct empirical studies on a number of general-purpose sentence embedding schemes, showing that good sentence embeddings without any fine-tuning on intent detection data could produce a non-trivially strong performance. Inspired by the results from our qualitative analysis, we propose a frustratingly easy modification, which leads to consistent improvements over all sentence encoding schemes, including those from the state-of-the-art prototypical network variants with task-specific fine-tuning.


pdf bib
Issues with Entailment-based Zero-shot Text Classification
Tingting Ma | Jin-Ge Yao | Chin-Yew Lin | Tiejun Zhao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

The general format of natural language inference (NLI) makes it tempting to be used for zero-shot text classification by casting any target label into a sentence of hypothesis and verifying whether or not it could be entailed by the input, aiming at generic classification applicable on any specified label space. In this opinion piece, we point out a few overlooked issues that are yet to be discussed in this line of work. We observe huge variance across different classification datasets amongst standard BERT-based NLI models and surprisingly find that pre-trained BERT without any fine-tuning can yield competitive performance against BERT fine-tuned for NLI. With the concern that these models heavily rely on spurious lexical patterns for prediction, we also experiment with preliminary approaches for more robust NLI, but the results are in general negative. Our observations reveal implicit but challenging difficulties in entailment-based zero-shot text classification.