Tista Saha


2022

pdf bib
HindiMD: A Multi-domain Corpora for Low-resource Sentiment Analysis
Mamta | Asif Ekbal | Pushpak Bhattacharyya | Tista Saha | Alka Kumar | Shikha Srivastava
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Social media platforms such as Twitter have evolved into a vast information sharing platform, allowing people from a variety of backgrounds and expertise to share their opinions on numerous events such as terrorism, narcotics and many other social issues. People sometimes misuse the power of social media for their agendas, such as illegal trades and negatively influencing others. Because of this, sentiment analysis has won the interest of a lot of researchers to widely analyze public opinion for social media monitoring. Several benchmark datasets for sentiment analysis across a range of domains have been made available, especially for high-resource languages. A few datasets are available for low-resource Indian languages like Hindi, such as movie reviews and product reviews, which do not address the current need for social media monitoring. In this paper, we address the challenges of sentiment analysis in Hindi and socially relevant domains by introducing a balanced corpus annotated with the sentiment classes, viz. positive, negative and neutral. To show the effective usage of the dataset, we build several deep learning based models and establish them as the baselines for further research in this direction.

2020

pdf bib
Multi-domain Tweet Corpora for Sentiment Analysis: Resource Creation and Evaluation
Mamta | Asif Ekbal | Pushpak Bhattacharyya | Shikha Srivastava | Alka Kumar | Tista Saha
Proceedings of the Twelfth Language Resources and Evaluation Conference

Due to the phenomenal growth of online content in recent time, sentiment analysis has attracted attention of the researchers and developers. A number of benchmark annotated corpora are available for domains like movie reviews, product reviews, hotel reviews, etc. The pervasiveness of social media has also lead to a huge amount of content posted by users who are misusing the power of social media to spread false beliefs and to negatively influence others. This type of content is coming from the domains like terrorism, cybersecurity, technology, social issues, etc. Mining of opinions from these domains is important to create a socially intelligent system to provide security to the public and to maintain the law and order situations. To the best of our knowledge, there is no publicly available tweet corpora for such pervasive domains. Hence, we firstly create a multi-domain tweet sentiment corpora and then establish a deep neural network based baseline framework to address the above mentioned issues. Annotated corpus has Cohen’s Kappa measurement for annotation quality of 0.770, which shows that the data is of acceptable quality. We are able to achieve 84.65% accuracy for sentiment analysis by using an ensemble of Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), and Gated Recurrent Unit(GRU).