Tobias Eder


pdf bib
Explaining Neural NLP Models for the Joint Analysis of Open-and-Closed-Ended Survey Answers
Edoardo Mosca | Katharina Harmann | Tobias Eder | Georg Groh
Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022)

Large-scale surveys are a widely used instrument to collect data from a target audience. Beyond the single individual, an appropriate analysis of the answers can reveal trends and patterns and thus generate new insights and knowledge for researchers. Current analysis practices employ shallow machine learning methods or rely on (biased) human judgment. This work investigates the usage of state-of-the-art NLP models such as BERT to automatically extract information from both open- and closed-ended questions. We also leverage explainability methods at different levels of granularity to further derive knowledge from the analysis model. Experiments on EMS—a survey-based study researching influencing factors affecting a student’s career goals—show that the proposed approach can identify such factors both at the input- and higher concept-level.

pdf bib
Long Input Dialogue Summarization with Sketch Supervision for Summarization of Primetime Television Transcripts
Nataliia Kees | Thien Nguyen | Tobias Eder | Georg Groh
Proceedings of The Workshop on Automatic Summarization for Creative Writing

This paper presents our entry to the CreativeSumm 2022 shared task. Specifically tackling the problem of prime-time television screenplay summarization based on the SummScreen Forever Dreaming dataset. Our approach utilizes extended Longformers combined with sketch supervision including categories specifically for scene descriptions. Our system was able to produce the shortest summaries out of all submissions. While some problems with factual consistency still remain, the system was scoring highest among competitors in the ROUGE and BERTScore evaluation categories.

pdf bib
Comparative Analysis of Cross-lingual Contextualized Word Embeddings
Hossain Shaikh Saadi | Viktor Hangya | Tobias Eder | Alexander Fraser
Proceedings of the The 2nd Workshop on Multi-lingual Representation Learning (MRL)

Contextualized word embeddings have emerged as the most important tool for performing NLP tasks in a large variety of languages. In order to improve the cross- lingual representation and transfer learning quality, contextualized embedding alignment techniques, such as mapping and model fine-tuning, are employed. Existing techniques however are time-, data- and computational resource-intensive. In this paper we analyze these techniques by utilizing three tasks: bilingual lexicon induction (BLI), word retrieval and cross-lingual natural language inference (XNLI) for a high resource (German-English) and a low resource (Bengali-English) language pair. In contrast to previous works which focus only on a few popular models, we compare five multilingual and seven monolingual language models and investigate the effect of various aspects on their performance, such as vocabulary size, number of languages used for training and number of parameters. Additionally, we propose a parameter-, data- and runtime-efficient technique which can be trained with 10% of the data, less than 10% of the time and have less than 5% of the trainable parameters compared to model fine-tuning. We show that our proposed method is competitive with resource heavy models, even outperforming them in some cases, even though it relies on less resource


pdf bib
Anchor-based Bilingual Word Embeddings for Low-Resource Languages
Tobias Eder | Viktor Hangya | Alexander Fraser
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Good quality monolingual word embeddings (MWEs) can be built for languages which have large amounts of unlabeled text. MWEs can be aligned to bilingual spaces using only a few thousand word translation pairs. For low resource languages training MWEs monolingually results in MWEs of poor quality, and thus poor bilingual word embeddings (BWEs) as well. This paper proposes a new approach for building BWEs in which the vector space of the high resource source language is used as a starting point for training an embedding space for the low resource target language. By using the source vectors as anchors the vector spaces are automatically aligned during training. We experiment on English-German, English-Hiligaynon and English-Macedonian. We show that our approach results not only in improved BWEs and bilingual lexicon induction performance, but also in improved target language MWE quality as measured using monolingual word similarity.


pdf bib
Evaluating bilingual word embeddings on the long tail
Fabienne Braune | Viktor Hangya | Tobias Eder | Alexander Fraser
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Bilingual word embeddings are useful for bilingual lexicon induction, the task of mining translations of given words. Many studies have shown that bilingual word embeddings perform well for bilingual lexicon induction but they focused on frequent words in general domains. For many applications, bilingual lexicon induction of rare and domain-specific words is of critical importance. Therefore, we design a new task to evaluate bilingual word embeddings on rare words in different domains. We show that state-of-the-art approaches fail on this task and present simple new techniques to improve bilingual word embeddings for mining rare words. We release new gold standard datasets and code to stimulate research on this task.