Tobias Norlund


2022

pdf bib
Can We Use Small Models to Investigate Multimodal Fusion Methods?
Lovisa Hagström | Tobias Norlund | Richard Johansson
Proceedings of the 2022 CLASP Conference on (Dis)embodiment

Many successful methods for fusing language with information from the visual modality have recently been proposed and the topic of multimodal training is ever evolving. However, it is still largely not known what makes different vision-and-language models successful. Investigations into this are made difficult by the large sizes of the models used, requiring large training datasets and causing long train and compute times. Therefore, we propose the idea of studying multimodal fusion methods in a smaller setting with small models and datasets. In this setting, we can experiment with different approaches for fusing multimodal information with language in a controlled fashion, while allowing for fast experimentation. We illustrate this idea with the math arithmetics sandbox. This is a setting in which we fuse language with information from the math modality and strive to replicate some fusion methods from the vision-and-language domain. We find that some results for fusion methods from the larger domain translate to the math arithmetics sandbox, indicating a promising future avenue for multimodal model prototyping.

2021

pdf bib
Building a Swedish Open-Domain Conversational Language Model
Tobias Norlund | Agnes Stenbom
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)

We present on-going work of evaluating the, to our knowledge, first large generative language model trained to converse in Swedish, using data from the online discussion forum Flashback. We conduct a human evaluation pilot study that indicates the model is often able to respond to conversations in both a human-like and informative manner, on a diverse set of topics. While data from online forums can be useful to build conversational systems, we reflect on the negative consequences that incautious application might have, and the need for taking active measures to safeguard against them.

pdf bib
Transferring Knowledge from Vision to Language: How to Achieve it and how to Measure it?
Tobias Norlund | Lovisa Hagström | Richard Johansson
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Large language models are known to suffer from the hallucination problem in that they are prone to output statements that are false or inconsistent, indicating a lack of knowledge. A proposed solution to this is to provide the model with additional data modalities that complements the knowledge obtained through text. We investigate the use of visual data to complement the knowledge of large language models by proposing a method for evaluating visual knowledge transfer to text for uni- or multimodal language models. The method is based on two steps, 1) a novel task querying for knowledge of memory colors, i.e. typical colors of well-known objects, and 2) filtering of model training data to clearly separate knowledge contributions. Additionally, we introduce a model architecture that involves a visual imagination step and evaluate it with our proposed method. We find that our method can successfully be used to measure visual knowledge transfer capabilities in models and that our novel model architecture shows promising results for leveraging multimodal knowledge in a unimodal setting.

2016

pdf bib
Parameterized context windows in Random Indexing
Tobias Norlund | David Nilsson | Magnus Sahlgren
Proceedings of the 1st Workshop on Representation Learning for NLP