Tom Hope


pdf bib
Extracting a Knowledge Base of Mechanisms from COVID-19 Papers
Tom Hope | Aida Amini | David Wadden | Madeleine van Zuylen | Sravanthi Parasa | Eric Horvitz | Daniel Weld | Roy Schwartz | Hannaneh Hajishirzi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The COVID-19 pandemic has spawned a diverse body of scientific literature that is challenging to navigate, stimulating interest in automated tools to help find useful knowledge. We pursue the construction of a knowledge base (KB) of mechanisms—a fundamental concept across the sciences, which encompasses activities, functions and causal relations, ranging from cellular processes to economic impacts. We extract this information from the natural language of scientific papers by developing a broad, unified schema that strikes a balance between relevance and breadth. We annotate a dataset of mechanisms with our schema and train a model to extract mechanism relations from papers. Our experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature, outperforming the prominent PubMed search in a study with clinical experts. Our search engine, dataset and code are publicly available.


pdf bib
SciSight: Combining faceted navigation and research group detection for COVID-19 exploratory scientific search
Tom Hope | Jason Portenoy | Kishore Vasan | Jonathan Borchardt | Eric Horvitz | Daniel Weld | Marti Hearst | Jevin West
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The COVID-19 pandemic has sparked unprecedented mobilization of scientists, generating a deluge of papers that makes it hard for researchers to keep track and explore new directions. Search engines are designed for targeted queries, not for discovery of connections across a corpus. In this paper, we present SciSight, a system for exploratory search of COVID-19 research integrating two key capabilities: first, exploring associations between biomedical facets automatically extracted from papers (e.g., genes, drugs, diseases, patient outcomes); second, combining textual and network information to search and visualize groups of researchers and their ties. SciSight has so far served over 15K users with over 42K page views and 13% returns.

pdf bib
Language (Re)modelling: Towards Embodied Language Understanding
Ronen Tamari | Chen Shani | Tom Hope | Miriam R L Petruck | Omri Abend | Dafna Shahaf
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While natural language understanding (NLU) is advancing rapidly, today’s technology differs from human-like language understanding in fundamental ways, notably in its inferior efficiency, interpretability, and generalization. This work proposes an approach to representation and learning based on the tenets of embodied cognitive linguistics (ECL). According to ECL, natural language is inherently executable (like programming languages), driven by mental simulation and metaphoric mappings over hierarchical compositions of structures and schemata learned through embodied interaction. This position paper argues that the use of grounding by metaphoric reasoning and simulation will greatly benefit NLU systems, and proposes a system architecture along with a roadmap towards realizing this vision.