We propose a method for unsupervised opinion summarization that encodes sentences from customer reviews into a hierarchical discrete latent space, then identifies common opinions based on the frequency of their encodings. We are able to generate both abstractive summaries by decoding these frequent encodings, and extractive summaries by selecting the sentences assigned to the same frequent encodings. Our method is attributable, because the model identifies sentences used to generate the summary as part of the summarization process. It scales easily to many hundreds of input reviews, because aggregation is performed in the latent space rather than over long sequences of tokens. We also demonstrate that our appraoch enables a degree of control, generating aspect-specific summaries by restricting the model to parts of the encoding space that correspond to desired aspects (e.g., location or food). Automatic and human evaluation on two datasets from different domains demonstrates that our method generates summaries that are more informative than prior work and better grounded in the input reviews.
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods; exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity.1
We propose a generative model of paraphrase generation, that encourages syntactic diversity by conditioning on an explicit syntactic sketch. We introduce Hierarchical Refinement Quantized Variational Autoencoders (HRQ-VAE), a method for learning decompositions of dense encodings as a sequence of discrete latent variables that make iterative refinements of increasing granularity. This hierarchy of codes is learned through end-to-end training, and represents fine-to-coarse grained information about the input. We use HRQ-VAE to encode the syntactic form of an input sentence as a path through the hierarchy, allowing us to more easily predict syntactic sketches at test time. Extensive experiments, including a human evaluation, confirm that HRQ-VAE learns a hierarchical representation of the input space, and generates paraphrases of higher quality than previous systems.
We propose a method for generating paraphrases of English questions that retain the original intent but use a different surface form. Our model combines a careful choice of training objective with a principled information bottleneck, to induce a latent encoding space that disentangles meaning and form. We train an encoder-decoder model to reconstruct a question from a paraphrase with the same meaning and an exemplar with the same surface form, leading to separated encoding spaces. We use a Vector-Quantized Variational Autoencoder to represent the surface form as a set of discrete latent variables, allowing us to use a classifier to select a different surface form at test time. Crucially, our method does not require access to an external source of target exemplars. Extensive experiments and a human evaluation show that we are able to generate paraphrases with a better tradeoff between semantic preservation and syntactic novelty compared to previous methods.
Multi-sentence questions (MSQs) are sequences of questions connected by relations which, unlike sequences of standalone questions, need to be answered as a unit. Following Rhetorical Structure Theory (RST), we recognise that different “question discourse relations” between the subparts of MSQs reflect different speaker intents, and consequently elicit different answering strategies. Correctly identifying these relations is therefore a crucial step in automatically answering MSQs. We identify five different types of MSQs in English, and define five novel relations to describe them. We extract over 162,000 MSQs from Stack Exchange to enable future research. Finally, we implement a high-precision baseline classifier based on surface features.
Recent approaches to question generation have used modifications to a Seq2Seq architecture inspired by advances in machine translation. Models are trained using teacher forcing to optimise only the one-step-ahead prediction. However, at test time, the model is asked to generate a whole sequence, causing errors to propagate through the generation process (exposure bias). A number of authors have suggested that optimising for rewards less tightly coupled to the training data might counter this mismatch. We therefore optimise directly for various objectives beyond simply replicating the ground truth questions, including a novel approach using an adversarial discriminator that seeks to generate questions that are indistinguishable from real examples. We confirm that training with policy gradient methods leads to increases in the metrics used as rewards. We perform a human evaluation, and show that although these metrics have previously been assumed to be good proxies for question quality, they are poorly aligned with human judgement and the model simply learns to exploit the weaknesses of the reward source.