Tomer Volk
2024
Text2Model: Text-based Model Induction for Zero-shot Image Classification
Ohad Amosy
|
Tomer Volk
|
Eilam Shapira
|
Eyal Ben-David
|
Roi Reichart
|
Gal Chechik
Findings of the Association for Computational Linguistics: EMNLP 2024
We address the challenge of building task-agnostic classifiers using only text descriptions, demonstrating a unified approach to image classification, 3D point cloud classification, and action recognition from scenes. Unlike approaches that learn a fixed representation of the output classes, we generate at inference time a model tailored to a query classification task. To generate task-based zero-shot classifiers, we train a hypernetwork that receives class descriptions and outputs a multi-class model. The hypernetwork is designed to be equivariant with respect to the set of descriptions and the classification layer, thus obeying the symmetries of the problem and improving generalization. Our approach generates non-linear classifiers, handles rich textual descriptions, and may be adapted to produce lightweight models efficient enough for on-device applications. We evaluate this approach in a series of zero-shot classification tasks, for image, point-cloud, and action recognition, using a range of text descriptions: From single words to rich descriptions. Our results demonstrate strong improvements over previous approaches, showing that zero-shot learning can be applied with little training data. Furthermore, we conduct an analysis with foundational vision and language models, demonstrating that they struggle to generalize when describing what attributes the class lacks.
2023
Example-based Hypernetworks for Multi-source Adaptation to Unseen Domains
Tomer Volk
|
Eyal Ben-David
|
Ohad Amosy
|
Gal Chechik
|
Roi Reichart
Findings of the Association for Computational Linguistics: EMNLP 2023
As Natural Language Processing (NLP) algorithms continually achieve new milestones, out-of-distribution generalization remains a significant challenge. This paper addresses the issue of multi-source adaptation for unfamiliar domains: We leverage labeled data from multiple source domains to generalize to unknown target domains at training. Our innovative framework employs example-based Hypernetwork adaptation: a T5 encoder-decoder initially generates a unique signature from an input example, embedding it within the source domains’ semantic space. This signature is subsequently utilized by a Hypernetwork to generate the task classifier’s weights. In an advanced version, the signature also enriches the input example’s representation. We evaluated our method across two tasks—sentiment classification and natural language inference—in 29 adaptation scenarios, where it outpaced established algorithms. We also compare our finetuned architecture to few-shot GPT-3, demonstrating its effectiveness in essential use cases. To the best of our knowledge, this marks the first application of Hypernetworks to the adaptation for unknown domains.
Search