Tomislava Lauc


2010

pdf bib
Building a Gold Standard for Event Detection in Croatian
Nikola Ljubešić | Tomislava Lauc | Damir Boras
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

This paper describes the process of building a newspaper corpus annotated with events described in specific documents. The main difference to the corpora built as part of the TDT initiative is that documents are not annotated by topics, but by specific events they describe. Additionally, documents are gathered from sixteen sources and all documents in the corpus are annotated with the corresponding event. The annotation process consists of a browsing and a searching step. Experiments are performed with a threshold that could be used in the browsing step yielding the result of having to browse through only 1% of document pairs for a 2% loss of relevant document pairs. A statistical analysis of the annotated corpus is undertaken showing that most events are described by few documents while just some events are reported by many documents. The inter-annotator agreement measures show high agreement concerning grouping documents into event clusters, but show a much lower agreement concerning the number of events the documents are organized into. An initial experiment is described giving a baseline for further research on this corpus.

2008

pdf bib
Generating a Morphological Lexicon of Organization Entity Names
Nikola Ljubešić | Tomislava Lauc | Damir Boras
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

This paper describes methods used for generating a morphological lexicon of organization entity names in Croatian. This resource is intended for two primary tasks: template-based natural language generation and named entity identification. The main problems concerning the lexicon generation are high level of inflection in Croatian and low linguistic quality of the primary resource containing named entities in normal form. The problem is divided into two subproblems concerning single-word and multi-word expressions. The single-word problem is solved by training a supervised learning algorithm called linear successive abstraction. With existing common language morphological resources and two simple hand-crafted rules backing up the algorithm, accuracy of 98.70% on the test set is achieved. The multi-word problem is solved through a semi-automated process for multi-word entities occurring in the first 10,000 named entities. The generated multi-word lexicon will be used for natural language generation only while named entity identification will be solved algorithmically in forthcoming research. The single-word lexicon is capable of handling both tasks.