We introduce iterative retrieval, a novel framework that empowers retrievers to make iterative decisions through policy optimization. Finding an optimal portfolio of retrieved items is a combinatorial optimization problem, generally considered NP-hard. This approach provides a learned approximation to such a solution, meeting specific task requirements under a given family of large language models (LLMs). We propose a training procedure based on reinforcement learning, incorporating feedback from LLMs. We instantiate an iterative retriever for composing in-context learning (ICL) exemplars and apply it to various semantic parsing tasks that demand synthesized programs as outputs. By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever, outperforming previous methods in selecting ICL exemplars on semantic parsing datasets such as CalFlow, TreeDST, and MTOP. Additionally, the trained iterative retriever generalizes across different inference LLMs beyond the one used during training.
We present a conceptual framework that unifies a variety of evaluation metrics for different structured prediction tasks (e.g. event and relation extraction, syntactic and semantic parsing). Our framework requires representing the outputs of these tasks as objects of certain data types, and derives metrics through matching of common substructures, possibly followed by normalization. We demonstrate how commonly used metrics for a number of tasks can be succinctly expressed by this framework, and show that new metrics can be naturally derived in a bottom-up way based on an output structure. We release a library that enables this derivation to create new metrics. Finally, we consider how specific characteristics of tasks motivate metric design decisions, and suggest possible modifications to existing metrics in line with those motivations.
We present a novel iterative extraction model, IterX, for extracting complex relations, or templates, i.e., N-tuples representing a mapping from named slots to spans of text within a document. Documents may feature zero or more instances of a template of any given type, and the task of template extraction entails identifying the templates in a document and extracting each template’s slot values. Our imitation learning approach casts the problem as a Markov decision process (MDP), and relieves the need to use predefined template orders to train an extractor. It leads to state-of-the-art results on two established benchmarks – 4-ary relation extraction on SciREX and template extraction on MUC-4 – as well as a strong baseline on the new BETTER Granular task.
We present an empirical study on methods for span finding, the selection of consecutive tokens in text for some downstream tasks. We focus on approaches that can be employed in training end-to-end information extraction systems, and find there is no definitive solution without considering task properties, and provide our observations to help with future design choices: 1) a tagging approach often yields higher precision while span enumeration and boundary prediction provide higher recall; 2) span type information can benefit a boundary prediction approach; 3) additional contextualization does not help span finding in most cases.
We present LOME, a system for performing multilingual information extraction. Given a text document as input, our core system identifies spans of textual entity and event mentions with a FrameNet (Baker et al., 1998) parser. It subsequently performs coreference resolution, fine-grained entity typing, and temporal relation prediction between events. By doing so, the system constructs an event and entity focused knowledge graph. We can further apply third-party modules for other types of annotation, like relation extraction. Our (multilingual) first-party modules either outperform or are competitive with the (monolingual) state-of-the-art. We achieve this through the use of multilingual encoders like XLM-R (Conneau et al., 2020) and leveraging multilingual training data. LOME is available as a Docker container on Docker Hub. In addition, a lightweight version of the system is accessible as a web demo.
We propose a novel method for hierarchical entity classification that embraces ontological structure at both training and during prediction. At training, our novel multi-level learning-to-rank loss compares positive types against negative siblings according to the type tree. During prediction, we define a coarse-to-fine decoder that restricts viable candidates at each level of the ontology based on already predicted parent type(s). Our approach significantly outperform prior work on strict accuracy, demonstrating the effectiveness of our method.
We introduce Uncertain Natural Language Inference (UNLI), a refinement of Natural Language Inference (NLI) that shifts away from categorical labels, targeting instead the direct prediction of subjective probability assessments. We demonstrate the feasibility of collecting annotations for UNLI by relabeling a portion of the SNLI dataset under a probabilistic scale, where items even with the same categorical label differ in how likely people judge them to be true given a premise. We describe a direct scalar regression modeling approach, and find that existing categorically-labeled NLI data can be used in pre-training. Our best models correlate well with humans, demonstrating models are capable of more subtle inferences than the categorical bin assignment employed in current NLI tasks.
We ask whether text understanding has progressed to where we may extract event information through incremental refinement of bleached statements derived from annotation manuals. Such a capability would allow for the trivial construction and extension of an extraction framework by intended end-users through declarations such as, “Some person was born in some location at some time.” We introduce an example of a model that employs such statements, with experiments illustrating we can extract events under closed ontologies and generalize to unseen event types simply by reading new definitions.
We recognize the task of event argument linking in documents as similar to that of intent slot resolution in dialogue, providing a Transformer-based model that extends from a recently proposed solution to resolve references to slots. The approach allows for joint consideration of argument candidates given a detected event, which we illustrate leads to state-of-the-art performance in multi-sentence argument linking.
Researchers illustrate improvements in contextual encoding strategies via resultant performance on a battery of shared Natural Language Understanding (NLU) tasks. Many of these tasks are of a categorical prediction variety: given a conditioning context (e.g., an NLI premise), provide a label based on an associated prompt (e.g., an NLI hypothesis). The categorical nature of these tasks has led to common use of a cross entropy log-loss objective during training. We suggest this loss is intuitively wrong when applied to plausibility tasks, where the prompt by design is neither categorically entailed nor contradictory given the context. Log-loss naturally drives models to assign scores near 0.0 or 1.0, in contrast to our proposed use of a margin-based loss. Following a discussion of our intuition, we describe a confirmation study based on an extreme, synthetically curated task derived from MultiNLI. We find that a margin-based loss leads to a more plausible model of plausibility. Finally, we illustrate improvements on the Choice Of Plausible Alternative (COPA) task through this change in loss.
Lexically-constrained sequence decoding allows for explicit positive or negative phrase-based constraints to be placed on target output strings in generation tasks such as machine translation or monolingual text rewriting. We describe vectorized dynamic beam allocation, which extends work in lexically-constrained decoding to work with batching, leading to a five-fold improvement in throughput when working with positive constraints. Faster decoding enables faster exploration of constraint strategies: we illustrate this via data augmentation experiments with a monolingual rewriter applied to the tasks of natural language inference, question answering and machine translation, showing improvements in all three.
We present a novel approach to dialogue state tracking and referring expression resolution tasks. Successful contextual understanding of multi-turn spoken dialogues requires resolving referring expressions across turns and tracking the entities relevant to the conversation across turns. Tracking conversational state is particularly challenging in a multi-domain scenario when there exist multiple spoken language understanding (SLU) sub-systems, and each SLU sub-system operates on its domain-specific meaning representation. While previous approaches have addressed the disparate schema issue by learning candidate transformations of the meaning representation, in this paper, we instead model the reference resolution as a dialogue context-aware user query reformulation task – the dialog state is serialized to a sequence of natural language tokens representing the conversation. We develop our model for query reformulation using a pointer-generator network and a novel multi-task learning setup. In our experiments, we show a significant improvement in absolute F1 on an internal as well as a, soon to be released, public benchmark respectively.
Tracking the state of the conversation is a central component in task-oriented spoken dialogue systems. One such approach for tracking the dialogue state is slot carryover, where a model makes a binary decision if a slot from the context is relevant to the current turn. Previous work on the slot carryover task used models that made independent decisions for each slot. A close analysis of the results show that this approach results in poor performance over longer context dialogues. In this paper, we propose to jointly model the slots. We propose two neural network architectures, one based on pointer networks that incorporate slot ordering information, and the other based on transformer networks that uses self attention mechanism to model the slot interdependencies. Our experiments on an internal dialogue benchmark dataset and on the public DSTC2 dataset demonstrate that our proposed models are able to resolve longer distance slot references and are able to achieve competitive performance.
Computer Assisted Discovery Extraction and Translation (CADET) is a workbench for helping knowledge workers find, label, and translate documents of interest. It combines a multitude of analytics together with a flexible environment for customizing the workflow for different users. This open-source framework allows for easy development of new research prototypes using a micro-service architecture based atop Docker and Apache Thrift.
We propose a framework for discriminative IR atop linguistic features, trained to improve the recall of answer candidate passage retrieval, the initial step in text-based question answering. We formalize this as an instance of linear feature-based IR, demonstrating a 34%-43% improvement in recall for candidate triage for QA.