Tongyue Zhang
Also published as: 童越 张
2022
GUTS at SemEval-2022 Task 4: Adversarial Training and Balancing Methods for Patronizing and Condescending Language Detection
Junyu Lu
|
Hao Zhang
|
Tongyue Zhang
|
Hongbo Wang
|
Haohao Zhu
|
Bo Xu
|
Hongfei Lin
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
Patronizing and Condescending Language (PCL) towards vulnerable communities in general media has been shown to have potentially harmful effects. Due to its subtlety and the good intentions behind its use, the audience is not aware of the language’s toxicity. In this paper, we present our method for the SemEval-2022 Task4 titled “Patronizing and Condescending Language Detection”. In Subtask A, a binary classification task, we introduce adversarial training based on Fast Gradient Method (FGM) and employ pre-trained model in a unified architecture. For Subtask B, framed as a multi-label classification problem, we utilize various improved multi-label cross-entropy loss functions and analyze the performance of our method. In the final evaluation, our system achieved official rankings of 17/79 and 16/49 on Subtask A and Subtask B, respectively. In addition, we explore the relationship between PCL and emotional polarity and intensity it contains.
2021
结合标签转移关系的多任务笑点识别方法(Multi-task punchlines recognition method combined with label transfer relationship)
Tongyue Zhang (张童越)
|
Shaowu Zhang (张绍武)
|
Bo Xu (徐博)
|
Liang Yang (杨亮)
|
Hongfei Lin (林鸿飞)
Proceedings of the 20th Chinese National Conference on Computational Linguistics
幽默在人类交流中扮演着重要角色,并大量存在于情景喜剧中。笑点(punchline)是情景喜剧实现幽默效果的形式之一,在情景喜剧笑点识别任务中,每条句子的标签代表该句是否为笑点,但是以往的笑点识别工作通常只通过建模上下文语义关系识别笑点,对标签的利用并不充分。为了充分利用标签序列中的信息,本文提出了一种新的识别方法,即结合条件随机场的单词级-句子级多任务学习模型,该模型在两方面进行了改进,首先将标签序列中相邻两个标签之间的转移关系看作幽默理论中不一致性的一种体现,并使用条件随机场学习这种转移关系,其次由于学习相邻标签之间的转移关系以及上下文语义关系均能够学习到铺垫和笑点之间的不一致性,两者之间存在相关性,为了使模型通过利用这种相关性提高笑点识别的效果,该模型引入了多任务学习方法,使用多任务学习方法同时学习每条句子的句义、组成每条句子的所有字符的词义,单词级别的标签转移关系以及句子级别的标签转移关系。本文在CCL2020“小牛杯”幽默计算—情景喜剧笑点识别评测任务的英文数据集上进行实验,结果表明,本文提出的方法比目前最好的方法提高了3.2%,在情景喜剧幽默笑点识别任务上取得了最好的效果,并通过消融实验证明了上述两方面改进的有效性。
Search
Fix data
Co-authors
- Hongfei Lin (林鸿飞) 2
- Bo Xu (徐波, 徐博) 2
- Junyu Lu 1
- Hongbo Wang 1
- Liang Yang (杨亮) 1
- show all...