Touhidul Alam


pdf bib
New Domain, Major Effort? How Much Data is Necessary to Adapt a Temporal Tagger to the Voice Assistant Domain
Touhidul Alam | Alessandra Zarcone | Sebastian Padó
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

Reliable tagging of Temporal Expressions (TEs, e.g., Book a table at L’Osteria for Sunday evening) is a central requirement for Voice Assistants (VAs). However, there is a dearth of resources and systems for the VA domain, since publicly-available temporal taggers are trained only on substantially different domains, such as news and clinical text. Since the cost of annotating large datasets is prohibitive, we investigate the trade-off between in-domain data and performance in DA-Time, a hybrid temporal tagger for the English VA domain which combines a neural architecture for robust TE recognition, with a parser-based TE normalizer. We find that transfer learning goes a long way even with as little as 25 in-domain sentences: DA-Time performs at the state of the art on the news domain, and substantially outperforms it on the VA domain.


pdf bib
PATE: A Corpus of Temporal Expressions for the In-car Voice Assistant Domain
Alessandra Zarcone | Touhidul Alam | Zahra Kolagar
Proceedings of the 12th Language Resources and Evaluation Conference

The recognition and automatic annotation of temporal expressions (e.g. “Add an event for tomorrow evening at eight to my calendar”) is a key module for AI voice assistants, in order to allow them to interact with apps (for example, a calendar app). However, in the NLP literature, research on temporal expressions has focused mostly on data from the news, from the clinical domain, and from social media. The voice assistant domain is very different than the typical domains that have been the focus of work on temporal expression identification, thus requiring a dedicated data collection. We present a crowdsourcing method for eliciting natural-language commands containing temporal expressions for an AI voice assistant, by using pictures and scenario descriptions. We annotated the elicited commands (480) as well as the commands in the Snips dataset following the TimeML/TIMEX3 annotation guidelines, reaching a total of 1188 annotated commands. The commands can be later used to train the NLU components of an AI voice assistant.