Tovly Deutsch


pdf bib
Linguistic Features for Readability Assessment
Tovly Deutsch | Masoud Jasbi | Stuart Shieber
Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications

Readability assessment aims to automatically classify text by the level appropriate for learning readers. Traditional approaches to this task utilize a variety of linguistically motivated features paired with simple machine learning models. More recent methods have improved performance by discarding these features and utilizing deep learning models. However, it is unknown whether augmenting deep learning models with linguistically motivated features would improve performance further. This paper combines these two approaches with the goal of improving overall model performance and addressing this question. Evaluating on two large readability corpora, we find that, given sufficient training data, augmenting deep learning models with linguistically motivated features does not improve state-of-the-art performance. Our results provide preliminary evidence for the hypothesis that the state-of-the-art deep learning models represent linguistic features of the text related to readability. Future research on the nature of representations formed in these models can shed light on the learned features and their relations to linguistically motivated ones hypothesized in traditional approaches.

pdf bib
Probing Neural Dialog Models for Conversational Understanding
Abdelrhman Saleh | Tovly Deutsch | Stephen Casper | Yonatan Belinkov | Stuart Shieber
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI

The predominant approach to open-domain dialog generation relies on end-to-end training of neural models on chat datasets. However, this approach provides little insight as to what these models learn (or do not learn) about engaging in dialog. In this study, we analyze the internal representations learned by neural open-domain dialog systems and evaluate the quality of these representations for learning basic conversational skills. Our results suggest that standard open-domain dialog systems struggle with answering questions, inferring contradiction, and determining the topic of conversation, among other tasks. We also find that the dyadic, turn-taking nature of dialog is not fully leveraged by these models. By exploring these limitations, we highlight the need for additional research into architectures and training methods that can better capture high-level information about dialog.