Tsung-Hui Chang


2022

pdf bib
Graph Enhanced Contrastive Learning for Radiology Findings Summarization
Jinpeng Hu | Zhuo Li | Zhihong Chen | Zhen Li | Xiang Wan | Tsung-Hui Chang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The impression section of a radiology report summarizes the most prominent observation from the findings section and is the most important section for radiologists to communicate to physicians. Summarizing findings is time-consuming and can be prone to error for inexperienced radiologists, and thus automatic impression generation has attracted substantial attention. With the encoder-decoder framework, most previous studies explore incorporating extra knowledge (e.g., static pre-defined clinical ontologies or extra background information). Yet, they encode such knowledge by a separate encoder to treat it as an extra input to their models, which is limited in leveraging their relations with the original findings. To address the limitation, we propose a unified framework for exploiting both extra knowledge and the original findings in an integrated way so that the critical information (i.e., key words and their relations) can be extracted in an appropriate way to facilitate impression generation. In detail, for each input findings, it is encoded by a text encoder and a graph is constructed through its entities and dependency tree. Then, a graph encoder (e.g., graph neural networks (GNNs)) is adopted to model relation information in the constructed graph. Finally, to emphasize the key words in the findings, contrastive learning is introduced to map positive samples (constructed by masking non-key words) closer and push apart negative ones (constructed by masking key words). The experimental results on two datasets, OpenI and MIMIC-CXR, confirm the effectiveness of our proposed method, where the state-of-the-art results are achieved.

pdf bib
A Simple yet Effective Relation Information Guided Approach for Few-Shot Relation Extraction
Yang Liu | Jinpeng Hu | Xiang Wan | Tsung-Hui Chang
Findings of the Association for Computational Linguistics: ACL 2022

Few-Shot Relation Extraction aims at predicting the relation for a pair of entities in a sentence by training with a few labelled examples in each relation. Some recent works have introduced relation information (i.e., relation labels or descriptions) to assist model learning based on Prototype Network. However, most of them constrain the prototypes of each relation class implicitly with relation information, generally through designing complex network structures, like generating hybrid features, combining with contrastive learning or attention networks. We argue that relation information can be introduced more explicitly and effectively into the model. Thus, this paper proposes a direct addition approach to introduce relation information. Specifically, for each relation class, the relation representation is first generated by concatenating two views of relations (i.e., [CLS] token embedding and the mean value of embeddings of all tokens) and then directly added to the original prototype for both train and prediction. Experimental results on the benchmark dataset FewRel 1.0 show significant improvements and achieve comparable results to the state-of-the-art, which demonstrates the effectiveness of our proposed approach. Besides, further analyses verify that the direct addition is a much more effective way to integrate the relation representations and the original prototypes.

2021

pdf bib
Exploring Word Segmentation and Medical Concept Recognition for Chinese Medical Texts
Yang Liu | Yuanhe Tian | Tsung-Hui Chang | Song Wu | Xiang Wan | Yan Song
Proceedings of the 20th Workshop on Biomedical Language Processing

Chinese word segmentation (CWS) and medical concept recognition are two fundamental tasks to process Chinese electronic medical records (EMRs) and play important roles in downstream tasks for understanding Chinese EMRs. One challenge to these tasks is the lack of medical domain datasets with high-quality annotations, especially medical-related tags that reveal the characteristics of Chinese EMRs. In this paper, we collected a Chinese EMR corpus, namely, ACEMR, with human annotations for Chinese word segmentation and EMR-related tags. On the ACEMR corpus, we run well-known models (i.e., BiLSTM, BERT, and ZEN) and existing state-of-the-art systems (e.g., WMSeg and TwASP) for CWS and medical concept recognition. Experimental results demonstrate the necessity of building a dedicated medical dataset and show that models that leverage extra resources achieve the best performance for both tasks, which provides certain guidance for future studies on model selection in the medical domain.

pdf bib
Word Graph Guided Summarization for Radiology Findings
Jinpeng Hu | Jianling Li | Zhihong Chen | Yaling Shen | Yan Song | Xiang Wan | Tsung-Hui Chang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Generating Radiology Reports via Memory-driven Transformer
Zhihong Chen | Yan Song | Tsung-Hui Chang | Xiang Wan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Medical imaging is frequently used in clinical practice and trials for diagnosis and treatment. Writing imaging reports is time-consuming and can be error-prone for inexperienced radiologists. Therefore, automatically generating radiology reports is highly desired to lighten the workload of radiologists and accordingly promote clinical automation, which is an essential task to apply artificial intelligence to the medical domain. In this paper, we propose to generate radiology reports with memory-driven Transformer, where a relational memory is designed to record key information of the generation process and a memory-driven conditional layer normalization is applied to incorporating the memory into the decoder of Transformer. Experimental results on two prevailing radiology report datasets, IU X-Ray and MIMIC-CXR, show that our proposed approach outperforms previous models with respect to both language generation metrics and clinical evaluations. Particularly, this is the first work reporting the generation results on MIMIC-CXR to the best of our knowledge. Further analyses also demonstrate that our approach is able to generate long reports with necessary medical terms as well as meaningful image-text attention mappings.