Tu Anh Dinh

Also published as: Tu Anh Dinh


2023

pdf bib
Perturbation-based QE: An Explainable, Unsupervised Word-level Quality Estimation Method for Blackbox Machine Translation
Tu Anh Dinh | Jan Niehues
Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track

Quality Estimation (QE) is the task of predicting the quality of Machine Translation (MT) system output, without using any gold-standard translation references. State-of-the-art QE models are supervised: they require human-labeled quality of some MT system output on some datasets for training, making them domain-dependent and MT-system-dependent. There has been research on unsupervised QE, which requires glass-box access to the MT systems, or parallel MT data to generate synthetic errors for training QE models. In this paper, we present Perturbation-based QE - a word-level Quality Estimation approach that works simply by analyzing MT system output on perturbed input source sentences. Our approach is unsupervised, explainable, and can evaluate any type of blackbox MT systems, including the currently prominent large language models (LLMs) with opaque internal processes. For language directions with no labeled QE data, our approach has similar or better performance than the zero-shot supervised approach on the WMT21 shared task. Our approach is better at detecting gender bias and word-sense-disambiguation errors in translation than supervised QE, indicating its robustness to out-of-domain usage. The performance gap is larger when detecting errors on a nontraditional translation-prompting LLM, indicating that our approach is more generalizable to different MT systems. We give examples demonstrating our approach’s explainability power, where it shows which input source words have influence on a certain MT output word.

pdf bib
End-to-End Evaluation for Low-Latency Simultaneous Speech Translation
Christian Huber | Tu Anh Dinh | Carlos Mullov | Ngoc-Quan Pham | Thai Binh Nguyen | Fabian Retkowski | Stefan Constantin | Enes Ugan | Danni Liu | Zhaolin Li | Sai Koneru | Jan Niehues | Alexander Waibel
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The challenge of low-latency speech translation has recently draw significant interest in the research community as shown by several publications and shared tasks. Therefore, it is essential to evaluate these different approaches in realistic scenarios. However, currently only specific aspects of the systems are evaluated and often it is not possible to compare different approaches. In this work, we propose the first framework to perform and evaluate the various aspects of low-latency speech translation under realistic conditions. The evaluation is carried out in an end-to-end fashion. This includes the segmentation of the audio as well as the run-time of the different components. Secondly, we compare different approaches to low-latency speech translation using this framework. We evaluate models with the option to revise the output as well as methods with fixed output. Furthermore, we directly compare state-of-the-art cascaded as well as end-to-end systems. Finally, the framework allows to automatically evaluate the translation quality as well as latency and also provides a web interface to show the low-latency model outputs to the user.

pdf bib
KIT’s Multilingual Speech Translation System for IWSLT 2023
Danni Liu | Thai Binh Nguyen | Sai Koneru | Enes Yavuz Ugan | Ngoc-Quan Pham | Tuan Nam Nguyen | Tu Anh Dinh | Carlos Mullov | Alexander Waibel | Jan Niehues
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

Many existing speech translation benchmarks focus on native-English speech in high-quality recording conditions, which often do not match the conditions in real-life use-cases. In this paper, we describe our speech translation system for the multilingual track of IWSLT 2023, which focuses on the translation of scientific conference talks. The test condition features accented input speech and terminology-dense contents. The tasks requires translation into 10 languages of varying amounts of resources. In absence of training data from the target domain, we use a retrieval-based approach (kNN-MT) for effective adaptation (+0.8 BLEU for speech translation). We also use adapters to easily integrate incremental training data from data augmentation, and show that it matches the performance of re-training. We observe that cascaded systems are more easily adaptable towards specific target domains, due to their separate modules. Our cascaded speech system outperforms its end-to-end counterpart on scientific talk translation, although their performance remains similar on TED talks.