Tuka Alhanai
2022
Speak: A Toolkit Using Amazon Mechanical Turk to Collect and Validate Speech Audio Recordings
Christopher Song
|
David Harwath
|
Tuka Alhanai
|
James Glass
Proceedings of the Thirteenth Language Resources and Evaluation Conference
We present Speak, a toolkit that allows researchers to crowdsource speech audio recordings using Amazon Mechanical Turk (MTurk). Speak allows MTurk workers to submit speech recordings in response to a task prompt and stimulus (e.g. image, text excerpt, audio file) defined by researchers, a functionality that is not natively offered by MTurk at the time of writing this paper. Importantly, the toolkit employs numerous measures to ensure that speech recordings collected are of adequate quality, in order to avoid accepting unusable data and prevent abuse/fraud. Speak has demonstrated utility, having collected over 600,000 recordings to date. The toolkit is open-source and available for download.
2021
SupCL-Seq: Supervised Contrastive Learning for Downstream Optimized Sequence Representations
Hooman Sedghamiz
|
Shivam Raval
|
Enrico Santus
|
Tuka Alhanai
|
Mohammad Ghassemi
Findings of the Association for Computational Linguistics: EMNLP 2021
While contrastive learning is proven to be an effective training strategy in computer vision, Natural Language Processing (NLP) is only recently adopting it as a self-supervised alternative to Masked Language Modeling (MLM) for improving sequence representations. This paper introduces SupCL-Seq, which extends the supervised contrastive learning from computer vision to the optimization of sequence representations in NLP. By altering the dropout mask probability in standard Transformer architectures (e.g. BERT-base), for every representation (anchor), we generate augmented altered views. A supervised contrastive loss is then utilized to maximize the system’s capability of pulling together similar samples (e.g., anchors and their altered views) and pushing apart the samples belonging to the other classes. Despite its simplicity, SupCL-Seq leads to large gains in many sequence classification tasks on the GLUE benchmark compared to a standard BERT-base, including 6% absolute improvement on CoLA, 5.4% on MRPC, 4.7% on RTE and 2.6% on STS-B. We also show consistent gains over self-supervised contrastively learned representations, especially in non-semantic tasks. Finally we show that these gains are not solely due to augmentation, but rather to a downstream optimized sequence representation.
Exploring a Unified Sequence-To-Sequence Transformer for Medical Product Safety Monitoring in Social Media
Shivam Raval
|
Hooman Sedghamiz
|
Enrico Santus
|
Tuka Alhanai
|
Mohammad Ghassemi
|
Emmanuele Chersoni
Findings of the Association for Computational Linguistics: EMNLP 2021
Adverse Events (AE) are harmful events resulting from the use of medical products. Although social media may be crucial for early AE detection, the sheer scale of this data makes it logistically intractable to analyze using human agents, with NLP representing the only low-cost and scalable alternative. In this paper, we frame AE Detection and Extraction as a sequence-to-sequence problem using the T5 model architecture and achieve strong performance improvements over the baselines on several English benchmarks (F1 = 0.71, 12.7% relative improvement for AE Detection; Strict F1 = 0.713, 12.4% relative improvement for AE Extraction). Motivated by the strong commonalities between AE tasks, the class imbalance in AE benchmarks, and the linguistic and structural variety typical of social media texts, we propose a new strategy for multi-task training that accounts, at the same time, for task and dataset characteristics. Our approach increases model robustness, leading to further performance gains. Finally, our framework shows some language transfer capabilities, obtaining higher performance than Multilingual BERT in zero-shot learning on French data.
Search
Fix data
Co-authors
- Mohammad Ghassemi 2
- Shivam Raval 2
- Enrico Santus 2
- Hooman Sedghamiz 2
- Emmanuele Chersoni 1
- show all...