Experts across diverse disciplines are often interested in making sense of large text collections. Traditionally, this challenge is approached either by noisy unsupervised techniques such as topic models, or by following a manual theme discovery process. In this paper, we expand the definition of a theme to account for more than just a word distribution, and include generalized concepts deemed relevant by domain experts. Then, we propose an interactive framework that receives and encodes expert feedback at different levels of abstraction. Our framework strikes a balance between automation and manual coding, allowing experts to maintain control of their study while reducing the manual effort required.
Automated methods for analyzing public opinion have grown in popularity with the proliferation of social media. While supervised methods can be very good at classifying text, the dynamic nature of social media discourse results in a moving target for supervised learning. Meanwhile, traditional unsupervised techniques for extracting themes from textual repositories, such as topic models, can result in incorrect outputs that are unusable to domain experts. For this reason, a non-trivial amount of research on social media discourse still relies on manual coding techniques. In this paper, we present an interactive, humans-in-the-loop framework that strikes a balance between unsupervised techniques and manual coding for extracting latent arguments from social media discussions. We use the COVID-19 vaccination debate as a case study, and show that our methodology can be used to obtain a more accurate, interpretable set of arguments when compared to traditional topic models. We do this at a relatively low manual cost, as 3 experts take approximately 2 hours to code close to 100k tweets.
The Covid-19 pandemic has led to infodemic of low quality information leading to poor health decisions. Combating the outcomes of this infodemic is not only a question of identifying false claims, but also reasoning about the decisions individuals make. In this work we propose a holistic analysis framework connecting stance and reason analysis, and fine-grained entity level moral sentiment analysis. We study how to model the dependencies between the different level of analysis and incorporate human insights into the learning process. Experiments show that our framework provides reliable predictions even in the low-supervision settings.