Tyler A. Chang


pdf bib
Word Acquisition in Neural Language Models
Tyler A. Chang | Benjamin K. Bergen
Transactions of the Association for Computational Linguistics, Volume 10

We investigate how neural language models acquire individual words during training, extracting learning curves and ages of acquisition for over 600 words on the MacArthur-Bates Communicative Development Inventory (Fenson et al., 2007). Drawing on studies of word acquisition in children, we evaluate multiple predictors for words’ ages of acquisition in LSTMs, BERT, and GPT-2. We find that the effects of concreteness, word length, and lexical class are pointedly different in children and language models, reinforcing the importance of interaction and sensorimotor experience in child language acquisition. Language models rely far more on word frequency than children, but, like children, they exhibit slower learning of words in longer utterances. Interestingly, models follow consistent patterns during training for both unidirectional and bidirectional models, and for both LSTM and Transformer architectures. Models predict based on unigram token frequencies early in training, before transitioning loosely to bigram probabilities, eventually converging on more nuanced predictions. These results shed light on the role of distributional learning mechanisms in children, while also providing insights for more human-like language acquisition in language models.


pdf bib
Encodings of Source Syntax: Similarities in NMT Representations Across Target Languages
Tyler A. Chang | Anna Rafferty
Proceedings of the 5th Workshop on Representation Learning for NLP

We train neural machine translation (NMT) models from English to six target languages, using NMT encoder representations to predict ancestor constituent labels of source language words. We find that NMT encoders learn similar source syntax regardless of NMT target language, relying on explicit morphosyntactic cues to extract syntactic features from source sentences. Furthermore, the NMT encoders outperform RNNs trained directly on several of the constituent label prediction tasks, suggesting that NMT encoder representations can be used effectively for natural language tasks involving syntax. However, both the NMT encoders and the directly-trained RNNs learn substantially different syntactic information from a probabilistic context-free grammar (PCFG) parser. Despite lower overall accuracy scores, the PCFG often performs well on sentences for which the RNN-based models perform poorly, suggesting that RNN architectures are constrained in the types of syntax they can learn.