Tzu-Mi Lin

Also published as: Tzu-mi Lin


2024

pdf bib
NYCU-NLP at EXALT 2024: Assembling Large Language Models for Cross-Lingual Emotion and Trigger Detection
Tzu-Mi Lin | Zhe-Yu Xu | Jian-Yu Zhou | Lung-Hao Lee
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

This study describes the model design of the NYCU-NLP system for the EXALT shared task at the WASSA 2024 workshop. We instruction-tune several large language models and then assemble various model combinations as our main system architecture for cross-lingual emotion and trigger detection in tweets. Experimental results showed that our best performing submission is an assembly of the Starling (7B) and Llama 3 (8B) models. Our submission was ranked sixth of 17 participating systems for the emotion detection subtask, and fifth of 7 systems for the binary trigger detection subtask.

pdf bib
NYCU-NLP at SemEval-2024 Task 2: Aggregating Large Language Models in Biomedical Natural Language Inference for Clinical Trials
Lung-hao Lee | Chen-ya Chiou | Tzu-mi Lin
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This study describes the model design of the NYCU-NLP system for the SemEval-2024 Task 2 that focuses on natural language inference for clinical trials. We aggregate several large language models to determine the inference relation (i.e., entailment or contradiction) between clinical trial reports and statements that may be manipulated with designed interventions to investigate the faithfulness and consistency of the developed models. First, we use ChatGPT v3.5 to augment original statements in training data and then fine-tune the SOLAR model with all augmented data. During the testing inference phase, we fine-tune the OpenChat model to reduce the influence of interventions and fed a cleaned statement into the fine-tuned SOLAR model for label prediction. Our submission produced a faithfulness score of 0.9236, ranking second of 32 participating teams, and ranked first for consistency with a score of 0.8092.

2023

pdf bib
Overview of the ROCLING 2023 Shared Task for Chinese Multi-genre Named Entity Recognition in the Healthcare Domain
Lung-Hao Lee | Tzu-Mi Lin | Chao-Yi Chen
Proceedings of the 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

pdf bib
NCUEE-NLP at WASSA 2023 Shared Task 1: Empathy and Emotion Prediction Using Sentiment-Enhanced RoBERTa Transformers
Tzu-Mi Lin | Jung-Ying Chang | Lung-Hao Lee
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

This paper describes our proposed system design for the WASSA 2023 shared task 1. We propose a unified architecture of ensemble neural networks to integrate the original RoBERTa transformer with two sentiment-enhanced RoBERTa-Twitter and EmoBERTa models. For Track 1 at the speech-turn level, our best submission achieved an average Pearson correlation score of 0.7236, ranking fourth for empathy, emotion polarity and emotion intensity prediction. For Track 2 at the essay-level, our best submission obtained an average Pearson correlation score of 0.4178 for predicting empathy and distress scores, ranked first among all nine submissions.

2022

pdf bib
NCUEE-NLP at SemEval-2022 Task 11: Chinese Named Entity Recognition Using the BERT-BiLSTM-CRF Model
Lung-Hao Lee | Chien-Huan Lu | Tzu-Mi Lin
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This study describes the model design of the NCUEE-NLP system for the Chinese track of the SemEval-2022 MultiCoNER task. We use the BERT embedding for character representation and train the BiLSTM-CRF model to recognize complex named entities. A total of 21 teams participated in this track, with each team allowed a maximum of six submissions. Our best submission, with a macro-averaging F1-score of 0.7418, ranked the seventh position out of 21 teams.

pdf bib
NCUEE-NLP@SMM4H’22: Classification of Self-reported Chronic Stress on Twitter Using Ensemble Pre-trained Transformer Models
Tzu-Mi Lin | Chao-Yi Chen | Yu-Wen Tzeng | Lung-Hao Lee
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

This study describes our proposed system design for the SMM4H 2022 Task 8. We fine-tune the BERT, RoBERTa, ALBERT, XLNet and ELECTRA transformers and their connecting classifiers. Each transformer model is regarded as a standalone method to detect tweets that self-reported chronic stress. The final output classification result is then combined using the majority voting ensemble mechanism. Experimental results indicate that our approach achieved a best F1-score of 0.73 over the positive class.