Tianci Liu


2025

pdf bib
Quantification of Large Language Model Distillation
Sunbowen Lee | Junting Zhou | Chang Ao | Kaige Li | Xeron Du | Sirui He | Haihong Wu | Tianci Liu | Jiaheng Liu | Hamid Alinejad-Rokny | Min Yang | Yitao Liang | Zhoufutu Wen | Shiwen Ni
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Model distillation is a fundamental technique in building large language models (LLMs), transferring knowledge from a teacher model to a student model. However, distillation can lead to model homogenization, reducing diversity among models and impairing their ability to robustly handle complex or novel tasks. These limitations underscore the need to systematically quantify the distillation process and its impact. In this work, we propose a framework to evaluate and quantify model distillation. Our method addresses two key aspects: (1) Identifying identity cognition contradictions to assess discrepancies in how models perceive and represent identity-related information, and (2) Analyzing multi-granularity response similarities across models to measure the extent of homogenization. Experimental results demonstrate two key insights: (1) Well-known closed-source and open-source LLMs usually exhibit high distillation degrees, except for Claude, Doubao, and Gemini. (2) Base LLMs show higher distillation degrees compared to aligned LLMs. By offering a systematic approach to improve the transparency of LLM data distillation, we call for LLMs with more independent development and more transparent technical reports to improve LLMs’ robustness and safety. The code and data are available at https://github.com/Aegis1863/LLMs-Distillation-Quantification.

pdf bib
RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization
Tianci Liu | Haoxiang Jiang | Tianze Wang | Ran Xu | Yue Yu | Linjun Zhang | Tuo Zhao | Haoyu Wang
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have achieved impressive performance but face high computational costs and latency, limiting their deployment in resource-constrained settings. In contrast, small-scale LLMs (SLMs) are more efficient yet struggle to capture evolving real-world knowledge. Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs. We propose RoseRAG, a robust RAG framework for SLMs via Margin-aware Preference Optimization. RoseRAG employs multi-turn prompting for detailed reasoning, rejection sampling for high-quality explanations, and contrastive preference selection to refine responses by maximizing the likelihood gap between preferred and non-preferred outputs. By integrating these components into a margin-aware optimization process, RoseRAG robustly enhances the accuracy and reliability of SLMs for RAG applications. Extensive experiments on three open-domain question answering benchmarks indicate that our innovative RoseRAG surpasses state-of-the-art baselines significantly.

pdf bib
Learning to Instruct: Fine-Tuning a Task-Aware Instruction Optimizer for Black-Box LLMs
Yunzhe Qi | Jinjin Tian | Tianci Liu | Ruirui Li | Tianxin Wei | Hui Liu | Xianfeng Tang | Monica Xiao Cheng | Jingrui He
Findings of the Association for Computational Linguistics: EMNLP 2025

The performance of Large Language Models (LLMs) critically depends on designing effective instructions, which is particularly challenging for black-box LLMs with inaccessible internal states. To this end, we introduce Learning to Instruct, a novel paradigm that formulates instruction optimization as an LLM fine-tuning objective for a white-box “instruction engineer” LLM, leveraging its rich learning capacity and vast pre-trained knowledge to enable efficient and effective instruction optimization. Within this paradigm, we propose Automatic Instruction Optimizer (AIO), a novel framework that fine-tunes a white-box LLM into a capable instruction engineer. AIO learns to optimize task-aware, human-comprehensible instructions by incorporating task nuances and feedback from the task-solving black-box LLM. To overcome the challenges of inaccessible black-box gradients and high API costs, AIO introduces a novel zeroth-order (ZO) gradient approximation mechanism guided by Thompson Sampling (TS), which reuses informative black-box LLM feedback for improved query efficiency. Extensive experiments show that AIO generally outperforms strong baselines in both effectiveness and efficiency, establishing Learning to Instruct as a promising new direction for black-box LLM instruction optimization.

pdf bib
Towards Universal Debiasing for Language Models-based Tabular Data Generation
Tianchun Li | Tianci Liu | Xingchen Wang | Rongzhe Wei | Pan Li | Lu Su | Jing Gao
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) have achieved promising results in tabular data generation. However, inherent historical biases in tabular datasets often cause LLMs to exacerbate fairness issues, particularly when multiple advantaged and protected features are involved. In this work, we introduce a universal debiasing framework that minimizes group-level dependencies by simultaneously reducing the mutual information between advantaged and protected attributes. By leveraging the autoregressive structure and analytic sampling distributions of LLM-based tabular data generators, our approach efficiently computes mutual information, reducing the need for cumbersome numerical estimations. Building on this foundation, we propose two complementary methods: a direct preference optimization (DPO)-based strategy, namely UDF-DPO, that integrates seamlessly with existing models, and a targeted debiasing technique, namely UDF-MIX, that achieves debiasing without tuning the parameters of LLMs. Extensive experiments demonstrate that our framework effectively balances fairness and utility, offering a scalable and practical solution for debiasing in high-stakes applications.

2024

pdf bib
RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning
Haoyu Wang | Tianci Liu | Ruirui Li | Monica Xiao Cheng | Tuo Zhao | Jing Gao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models, trained on large-scale corpora, demonstrate strong generalizability across various NLP tasks. Fine-tuning these models for specific tasks typically involves updating all parameters, which is resource-intensive. Parameter-efficient fine-tuning (PEFT) methods, such as the popular LoRA family, introduce low-rank matrices to learn only a few parameters efficiently. However, during inference, the product of these matrices updates all pre-trained parameters, complicating tasks like knowledge editing that require selective updates. We propose a novel PEFT method, which conducts row and column-wise sparse low-rank adaptation (RoseLoRA), to address this challenge. RoseLoRA identifies and updates only the most important parameters for a specific task, maintaining efficiency while preserving other model knowledge. By adding a sparsity constraint on the product of low-rank matrices and converting it to row and column-wise sparsity, we ensure efficient and precise model updates. Our theoretical analysis guarantees the lower bound of the sparsity with respective to the matrix product. Extensive experiments on five benchmarks across twenty datasets demonstrate that RoseLoRA outperforms baselines in both general fine-tuning and knowledge editing tasks.

2023

pdf bib
HadSkip: Homotopic and Adaptive Layer Skipping of Pre-trained Language Models for Efficient Inference
Haoyu Wang | Yaqing Wang | Tianci Liu | Tuo Zhao | Jing Gao
Findings of the Association for Computational Linguistics: EMNLP 2023

Pre-trained language models (LMs) have brought remarkable performance on numerous NLP tasks. However, they require significant resources and entail high computational costs for inference, making them challenging to deploy in real-world and real-time systems. Existing early exiting methods aim to reduce computational complexity by selecting the layer at which to exit, but suffer from the limitation that they have to sequentially traverse through all layers prior to the selected exit layer, which lacks flexibility and degrades their performance. To solve this problem, we propose a homotopic and adaptive layer skipping fine-tuning method named HadSkip. HadSkip adaptively selects the layers to skip based on a predefined budget. Specifically, we introduce a learnable gate before each layer of the LM to determine whether the current layer should be skipped. To tackle various challenges in training such as discrete gates and the budget constraint, we propose a fine-grained initialization strategy and homotopic optimization strategy. We conduct extensive experiments on the GLUE benchmark, and experimental results demonstrate the proposed HadSkip outperforms all state-of-the-art baselines significantly.