Tien-Phat Nguyen
Also published as: Tien Phat Nguyen
2025
XTRA: Cross-Lingual Topic Modeling with Topic and Representation Alignments
Tien Phat Nguyen
|
Ngo Vu Minh
|
Tung Nguyen
|
Linh Ngo Van
|
Duc Anh Nguyen
|
Dinh Viet Sang
|
Trung Le
Findings of the Association for Computational Linguistics: EMNLP 2025
Cross-lingual topic modeling aims to uncover shared semantic themes across languages. Several methods have been proposed to address this problem, leveraging both traditional and neural approaches. While previous methods have achieved some improvements in topic diversity, they often struggle to ensure high topic coherence and consistent alignment across languages. We propose XTRA (Cross-Lingual Topic Modeling with Topic and Representation Alignments), a novel framework that unifies Bag-of-Words modeling with multilingual embeddings. XTRA introduces two core components: (1) representation alignment, aligning document-topic distributions via contrastive learning in a shared semantic space; and (2) topic alignment, projecting topic-word distributions into the same space to enforce cross-lingual consistency. This dual mechanism enables XTRA to learn topics that are interpretable (coherent and diverse) and well-aligned across languages. Experiments on multilingual corpora confirm that XTRA significantly outperforms strong baselines in topic coherence, diversity, and alignment quality.
2024
Z-GMOT: Zero-shot Generic Multiple Object Tracking
Kim Tran
|
Anh Duy Le Dinh
|
Tien-Phat Nguyen
|
Thinh Phan
|
Pha Nguyen
|
Khoa Luu
|
Donald Adjeroh
|
Gianfranco Doretto
|
Ngan Le
Findings of the Association for Computational Linguistics: NAACL 2024
Despite recent significant progress, Multi-Object Tracking (MOT) faces limitations such as reliance on prior knowledge and predefined categories and struggles with unseen objects. To address these issues, Generic Multiple Object Tracking (GMOT) has emerged as an alternative approach, requiring less prior information. However, current GMOT methods often rely on initial bounding boxes and struggle to handle variations in factors such as viewpoint, lighting, occlusion, and scale, among others. Our contributions commence with the introduction of the Referring GMOT dataset a collection of videos, each accompanied by detailed textual descriptions of their attributes. Subsequently, we propose Z-GMOT, a cutting-edge tracking solution capable of tracking objects from never-seen categories without the need of initial bounding boxes or predefined categories. Within our Z-GMOT framework, we introduce two novel components: (i) iGLIP, an improved Grounded language-image pretraining, for accurately detecting unseen objects with specific characteristics. (ii) MA-SORT, a novel object association approach that adeptly integrates motion and appearance-based matching strategies to tackle the complex task of tracking objects with high similarity. Our contributions are benchmarked through extensive experiments conducted on the Referring GMOT dataset for GMOT task. Additionally, to assess the generalizability of the proposed Z-GMOT, we conduct ablation studies on the DanceTrack and MOT20 datasets for the MOT task. Our dataset, code, and models are released at: https://fsoft-aic.github.io/Z-GMOT
Search
Fix author
Co-authors
- Donald Adjeroh 1
- Gianfranco Doretto 1
- Ngan Le 1
- Trung Le 1
- Anh Duy Le Dinh 1
- show all...