Recent studies employing Large Language Models (LLMs) to test the Argument from the Poverty of the Stimulus (APS) have yielded contrasting results across syntactic phenomena. This paper investigates the hypothesis that characteristics of the stimuli used in recent studies, including lexical ambiguities and structural complexities, may confound model performance. A methodology is proposed for re-evaluating LLM competence on syntactic prediction, focusing on GPT-2. This involves: 1) establishing a baseline on previously used (both filtered and unfiltered) stimuli, and 2) generating a new, refined dataset using a state-of-the-art (SOTA) generative LLM (Gemini 2.5 Pro Preview) guided by linguistically-informed templates designed to mitigate identified confounds. Our preliminary findings indicate that GPT-2 demonstrates notably improved performance on these refined PG stimuli compared to baselines, suggesting that stimulus quality significantly influences outcomes in surprisal-based evaluations of LLM syntactic competency.
Recent studies probing the Argument from the Poverty of the Stimulus (APS) have applied Large Language Models (LLMs) to test the learnability of complex syntax through surprisal-based metrics. However, divergent conclusions raise questions concerning the insights these metrics offer. While Wilcox et al. (2024) used direct minimal pair comparisons (the “wh-effect”) to demonstrate that models successfully generalise knowledge of filler-gap dependencies, Lan et al. (2024) used a Difference-in-Differences (DiD) metric and found that models largely fail on parasitic gaps (PGs). This paper argues that the direct minimal pair approach offers greater diagnostic transparency. We demonstrate this by generating a full 8-permutation paradigm of refined PG stimuli and evaluating the GPT-2 model used in previous studies with a systematic Wilcox-style wh-effect analysis. Our results show that GPT-2 succeeds across all four tested conditions, indicating robust knowledge of filler-gap licensing principles even in complex PG environments. This finding, which contrasts with the more ambiguous results from DiD-style metrics, suggests that the choice of evaluation metric is critical for assessing an LLM’s syntactic competence.
Model-internal uncertainty metrics like perplexity potentially offer low-cost signals for Machine Translation Quality Estimation (TQE). This paper analyses perplexity in the No Language Left Behind (NLLB) multilingual model. We quantify a significant model-human perplexity gap, where the model is consistently more confident in its own, often literal, machine-generated translation than in diverse, high-quality human versions. We then demonstrate that the utility of perplexity as a TQE signal is highly context-dependent, being strongest for low-resource pairs. Finally, we present an illustrative case study where a flawed translation is refined by providing potentially useful information in a targeted prompt, simulating a knowledge-based repair. We show that as the translation’s quality and naturalness improve (a +0.15 COMET score increase), its perplexity also increases, challenging the simple assumption that lower perplexity indicates higher quality and motivating a more nuanced view of uncertainty as signalling a text’s departure from rigid translationese.
Combining large language models with logical reasoning enhances their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges when gathering reliable data from the web to build comprehensive training datasets, subsequently affecting performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logical structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into text to create augmented data. Notably, our methodology is architecture-agnostic and enhances both generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as reading comprehension requiring logical reasoning, textual entailment, and natural language inference. Furthermore, our method leads on the ReClor leaderboard at https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347. The source code and data are publicly available at https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning.