Usama Yaseen


pdf bib
Data Augmentation for Low-Resource Named Entity Recognition Using Backtranslation
Usama Yaseen | Stefan Langer
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

The state of art natural language processing systems relies on sizable training datasets to achieve high performance. Lack of such datasets in the specialized low resource domains lead to suboptimal performance. In this work, we adapt backtranslation to generate high quality and linguistically diverse synthetic data for low-resource named entity recognition. We perform experiments on two datasets from the materials science (MaSciP) and biomedical (S800) domains. The empirical results demonstrate the effectiveness of our proposed augmentation strategy, particularly in the low-resource scenario.

pdf bib
Neural Text Classification and Stacked Heterogeneous Embeddings for Named Entity Recognition in SMM4H 2021
Usama Yaseen | Stefan Langer
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task

This paper presents our findings from participating in the SMM4H Shared Task 2021. We addressed Named Entity Recognition (NER) and Text Classification. To address NER we explored BiLSTM-CRF with Stacked Heterogeneous embeddings and linguistic features. We investigated various machine learning algorithms (logistic regression, SVM and Neural Networks) to address text classification. Our proposed approaches can be generalized to different languages and we have shown its effectiveness for English and Spanish. Our text classification submissions have achieved competitive performance with F1-score of 0.46 and 0.90 on ADE Classification (Task 1a) and Profession Classification (Task 7a) respectively. In the case of NER, our submissions scored F1-score of 0.50 and 0.82 on ADE Span Detection (Task 1b) and Profession span detection (Task 7b) respectively.


pdf bib
Neural Architectures for Fine-Grained Propaganda Detection in News
Pankaj Gupta | Khushbu Saxena | Usama Yaseen | Thomas Runkler | Hinrich Schütze
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

This paper describes our system (MIC-CIS) details and results of participation in the fine grained propaganda detection shared task 2019. To address the tasks of sentence (SLC) and fragment level (FLC) propaganda detection, we explore different neural architectures (e.g., CNN, LSTM-CRF and BERT) and extract linguistic (e.g., part-of-speech, named entity, readability, sentiment, emotion, etc.), layout and topical features. Specifically, we have designed multi-granularity and multi-tasking neural architectures to jointly perform both the sentence and fragment level propaganda detection. Additionally, we investigate different ensemble schemes such as majority-voting, relax-voting, etc. to boost overall system performance. Compared to the other participating systems, our submissions are ranked 3rd and 4th in FLC and SLC tasks, respectively.

pdf bib
Linguistically Informed Relation Extraction and Neural Architectures for Nested Named Entity Recognition in BioNLP-OST 2019
Pankaj Gupta | Usama Yaseen | Hinrich Schütze
Proceedings of the 5th Workshop on BioNLP Open Shared Tasks

Named Entity Recognition (NER) and Relation Extraction (RE) are essential tools in distilling knowledge from biomedical literature. This paper presents our findings from participating in BioNLP Shared Tasks 2019. We addressed Named Entity Recognition including nested entities extraction, Entity Normalization and Relation Extraction. Our proposed approach of Named Entities can be generalized to different languages and we have shown it’s effectiveness for English and Spanish text. We investigated linguistic features, hybrid loss including ranking and Conditional Random Fields (CRF), multi-task objective and token level ensembling strategy to improve NER. We employed dictionary based fuzzy and semantic search to perform Entity Normalization. Finally, our RE system employed Support Vector Machine (SVM) with linguistic features. Our NER submission (team:MIC-CIS) ranked first in BB-2019 norm+NER task with standard error rate (SER) of 0.7159 and showed competitive performance on PharmaCo NER task with F1-score of 0.8662. Our RE system ranked first in the SeeDev-binary Relation Extraction Task with F1-score of 0.3738.