Ute Schmid


pdf bib
Extending Challenge Sets to Uncover Gender Bias in Machine Translation: Impact of Stereotypical Verbs and Adjectives
Jonas-Dario Troles | Ute Schmid
Proceedings of the Sixth Conference on Machine Translation

Human gender bias is reflected in language and text production. Because state-of-the-art machine translation (MT) systems are trained on large corpora of text, mostly generated by humans, gender bias can also be found in MT. For instance when occupations are translated from a language like English, which mostly uses gender neutral words, to a language like German, which mostly uses a feminine and a masculine version for an occupation, a decision must be made by the MT System. Recent research showed that MT systems are biased towards stereotypical translation of occupations. In 2019 the first, and so far only, challenge set, explicitly designed to measure the extent of gender bias in MT systems has been published. In this set measurement of gender bias is solely based on the translation of occupations. With our paper we present an extension of this challenge set, called WiBeMT, which adds gender-biased adjectives and sentences with gender-biased verbs. The resulting challenge set consists of over 70, 000 sentences and has been translated with three commercial MT systems: DeepL Translator, Microsoft Translator, and Google Translate. Results show a gender bias for all three MT systems. This gender bias is to a great extent significantly influenced by adjectives and to a lesser extent by verbs.