Uxoa Iñurrieta


2023

pdf bib
PARSEME corpus release 1.3
Agata Savary | Cherifa Ben Khelil | Carlos Ramisch | Voula Giouli | Verginica Barbu Mititelu | Najet Hadj Mohamed | Cvetana Krstev | Chaya Liebeskind | Hongzhi Xu | Sara Stymne | Tunga Güngör | Thomas Pickard | Bruno Guillaume | Eduard Bejček | Archna Bhatia | Marie Candito | Polona Gantar | Uxoa Iñurrieta | Albert Gatt | Jolanta Kovalevskaite | Timm Lichte | Nikola Ljubešić | Johanna Monti | Carla Parra Escartín | Mehrnoush Shamsfard | Ivelina Stoyanova | Veronika Vincze | Abigail Walsh
Proceedings of the 19th Workshop on Multiword Expressions (MWE 2023)

We present version 1.3 of the PARSEME multilingual corpus annotated with verbal multiword expressions. Since the previous version, new languages have joined the undertaking of creating such a resource, some of the already existing corpora have been enriched with new annotated texts, while others have been enhanced in various ways. The PARSEME multilingual corpus represents 26 languages now. All monolingual corpora therein use Universal Dependencies v.2 tagset. They are (re-)split observing the PARSEME v.1.2 standard, which puts impact on unseen VMWEs. With the current iteration, the corpus release process has been detached from shared tasks; instead, a process for continuous improvement and systematic releases has been introduced.

2020

pdf bib
Edition 1.2 of the PARSEME Shared Task on Semi-supervised Identification of Verbal Multiword Expressions
Carlos Ramisch | Agata Savary | Bruno Guillaume | Jakub Waszczuk | Marie Candito | Ashwini Vaidya | Verginica Barbu Mititelu | Archna Bhatia | Uxoa Iñurrieta | Voula Giouli | Tunga Güngör | Menghan Jiang | Timm Lichte | Chaya Liebeskind | Johanna Monti | Renata Ramisch | Sara Stymne | Abigail Walsh | Hongzhi Xu
Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons

We present edition 1.2 of the PARSEME shared task on identification of verbal multiword expressions (VMWEs). Lessons learned from previous editions indicate that VMWEs have low ambiguity, and that the major challenge lies in identifying test instances never seen in the training data. Therefore, this edition focuses on unseen VMWEs. We have split annotated corpora so that the test corpora contain around 300 unseen VMWEs, and we provide non-annotated raw corpora to be used by complementary discovery methods. We released annotated and raw corpora in 14 languages, and this semi-supervised challenge attracted 7 teams who submitted 9 system results. This paper describes the effort of corpus creation, the task design, and the results obtained by the participating systems, especially their performance on unseen expressions.

2018

pdf bib
Konbitzul: an MWE-specific database for Spanish-Basque
Uxoa Iñurrieta | Itziar Aduriz | Arantza Díaz de Ilarraza | Gorka Labaka | Kepa Sarasola
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Verbal Multiword Expressions in Basque Corpora
Uxoa Iñurrieta | Itziar Aduriz | Ainara Estarrona | Itziar Gonzalez-Dios | Antton Gurrutxaga | Ruben Urizar | Iñaki Alegria
Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018)

This paper presents a Basque corpus where Verbal Multiword Expressions (VMWEs) were annotated following universal guidelines. Information on the annotation is given, and some ideas for discussion upon the guidelines are also proposed. The corpus is useful not only for NLP-related research, but also to draw conclusions on Basque phraseology in comparison with other languages.

pdf bib
Edition 1.1 of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions
Carlos Ramisch | Silvio Ricardo Cordeiro | Agata Savary | Veronika Vincze | Verginica Barbu Mititelu | Archna Bhatia | Maja Buljan | Marie Candito | Polona Gantar | Voula Giouli | Tunga Güngör | Abdelati Hawwari | Uxoa Iñurrieta | Jolanta Kovalevskaitė | Simon Krek | Timm Lichte | Chaya Liebeskind | Johanna Monti | Carla Parra Escartín | Behrang QasemiZadeh | Renata Ramisch | Nathan Schneider | Ivelina Stoyanova | Ashwini Vaidya | Abigail Walsh
Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018)

This paper describes the PARSEME Shared Task 1.1 on automatic identification of verbal multiword expressions. We present the annotation methodology, focusing on changes from last year’s shared task. Novel aspects include enhanced annotation guidelines, additional annotated data for most languages, corpora for some new languages, and new evaluation settings. Corpora were created for 20 languages, which are also briefly discussed. We report organizational principles behind the shared task and the evaluation metrics employed for ranking. The 17 participating systems, their methods and obtained results are also presented and analysed.

2017

pdf bib
Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics
Florian Kunneman | Uxoa Iñurrieta | John J. Camilleri | Mariona Coll Ardanuy
Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics

pdf bib
Rule-Based Translation of Spanish Verb-Noun Combinations into Basque
Uxoa Iñurrieta | Itziar Aduriz | Arantza Díaz de Ilarraza | Gorka Labaka | Kepa Sarasola
Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)

This paper presents a method to improve the translation of Verb-Noun Combinations (VNCs) in a rule-based Machine Translation (MT) system for Spanish-Basque. Linguistic information about a set of VNCs is gathered from the public database Konbitzul, and it is integrated into the MT system, leading to an improvement in BLEU, NIST and TER scores, as well as the results being evidently better according to human evaluators.

2016

pdf bib
Using Linguistic Data for English and Spanish Verb-Noun Combination Identification
Uxoa Iñurrieta | Arantza Díaz de Ilarraza | Gorka Labaka | Kepa Sarasola | Itziar Aduriz | John Carroll
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

We present a linguistic analysis of a set of English and Spanish verb+noun combinations (VNCs), and a method to use this information to improve VNC identification. Firstly, a sample of frequent VNCs are analysed in-depth and tagged along lexico-semantic and morphosyntactic dimensions, obtaining satisfactory inter-annotator agreement scores. Then, a VNC identification experiment is undertaken, where the analysed linguistic data is combined with chunking information and syntactic dependencies. A comparison between the results of the experiment and the results obtained by a basic detection method shows that VNC identification can be greatly improved by using linguistic information, as a large number of additional occurrences are detected with high precision.