Vagrant Gautam


pdf bib
A Lightweight Method to Generate Unanswerable Questions in English
Vagrant Gautam | Miaoran Zhang | Dietrich Klakow
Findings of the Association for Computational Linguistics: EMNLP 2023

If a question cannot be answered with the available information, robust systems for question answering (QA) should know *not* to answer. One way to build QA models that do this is with additional training data comprised of unanswerable questions, created either by employing annotators or through automated methods for unanswerable question generation. To show that the model complexity of existing automated approaches is not justified, we examine a simpler data augmentation method for unanswerable question generation in English: performing antonym and entity swaps on answerable questions. Compared to the prior state-of-the-art, data generated with our training-free and lightweight strategy results in better models (+1.6 F1 points on SQuAD 2.0 data with BERT-large), and has higher human-judged relatedness and readability. We quantify the raw benefits of our approach compared to no augmentation across multiple encoder models, using different amounts of generated data, and also on TydiQA-MinSpan data (+9.3 F1 points with BERT-large). Our results establish swaps as a simple but strong baseline for future work.


pdf bib
Avengers, Ensemble! Benefits of ensembling in grapheme-to-phoneme prediction
Vagrant Gautam | Wang Yau Li | Zafarullah Mahmood | Fred Mailhot | Shreekantha Nadig | Riqiang Wang | Nathan Zhang
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

We describe three baseline beating systems for the high-resource English-only sub-task of the SIGMORPHON 2021 Shared Task 1: a small ensemble that Dialpad’s speech recognition team uses internally, a well-known off-the-shelf model, and a larger ensemble model comprising these and others. We additionally discuss the challenges related to the provided data, along with the processing steps we took.