Vaibhav Bhargava
2024
UIC NLP GRADS at SemEval-2024 Task 3: Two-Step Disjoint Modeling for Emotion-Cause Pair Extraction
Sharad Chandakacherla
|
Vaibhav Bhargava
|
Natalie Parde
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Disentangling underlying factors contributing to the expression of emotion in multimodal data is challenging but may accelerate progress toward many real-world applications. In this paper we describe our approach for solving SemEval-2024 Task #3, Sub-Task #1, focused on identifying utterance-level emotions and their causes using the text available from the multimodal F.R.I.E.N.D.S. television series dataset. We propose to disjointly model emotion detection and causal span detection, borrowing a paradigm popular in question answering (QA) to train our model. Through our experiments we find that (a) contextual utterances before and after the target utterance play a crucial role in emotion classification; and (b) once the emotion is established, detecting the causal spans resulting in that emotion using our QA-based technique yields promising results.