Vaibhav Varshney


2022

pdf bib
Prompt Augmented Generative Replay via Supervised Contrastive Learning for Lifelong Intent Detection
Vaibhav Varshney | Mayur Patidar | Rajat Kumar | Lovekesh Vig | Gautam Shroff
Findings of the Association for Computational Linguistics: NAACL 2022

Identifying all possible user intents for a dialog system at design time is challenging even for skilled domain experts. For practical applications, novel intents may have to be inferred incrementally on the fly. This typically entails repeated retraining of the intent detector on both the existing and novel intents which can be expensive and would require storage of all past data corresponding to prior intents. In this paper, the objective is to continually train an intent detector on new intents while maintaining performance on prior intents without mandating access to prior intent data. Several data replay-based approaches have been introduced to avoid catastrophic forgetting during continual learning, including exemplar and generative replay. Current generative replay approaches struggle to generate representative samples because the generation is conditioned solely on the class/task label. Motivated by the recent work around prompt-based generation via pre-trained language models (PLMs), we employ generative replay using PLMs for incremental intent detection. Unlike exemplar replay, we only store the relevant contexts per intent in memory and use these stored contexts (with the class label) as prompts for generating intent-specific utterances. We use a common model for both generation and classification to promote optimal sharing of knowledge across both tasks. To further improve generation, we employ supervised contrastive fine-tuning of the PLM. Our proposed approach achieves state-of-the-art (SOTA) for lifelong intent detection on four public datasets and even outperforms exemplar replay-based approaches. The technique also achieves SOTA on a lifelong relation extraction task, suggesting that the approach is extendable to other continual learning tasks beyond intent detection.

pdf bib
Intent Detection and Discovery from User Logs via Deep Semi-Supervised Contrastive Clustering
Rajat Kumar | Mayur Patidar | Vaibhav Varshney | Lovekesh Vig | Gautam Shroff
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Intent Detection is a crucial component of Dialogue Systems wherein the objective is to classify a user utterance into one of multiple pre-defined intents. A pre-requisite for developing an effective intent identifier is a training dataset labeled with all possible user intents. However, even skilled domain experts are often unable to foresee all possible user intents at design time and for practical applications, novel intents may have to be inferred incrementally on-the-fly from user utterances. Therefore, for any real-world dialogue system, the number of intents increases over time and new intents have to be discovered by analyzing the utterances outside the existing set of intents. In this paper, our objective is to i) detect known intent utterances from a large number of unlabeled utterance samples given a few labeled samples and ii) discover new unknown intents from the remaining unlabeled samples. Existing SOTA approaches address this problem via alternate representation learning and clustering wherein pseudo labels are used for updating the representations and clustering is used for generating the pseudo labels. Unlike existing approaches that rely on epoch wise cluster alignment, we propose an end-to-end deep contrastive clustering algorithm that jointly updates model parameters and cluster centers via supervised and self-supervised learning and optimally utilizes both labeled and unlabeled data. Our proposed approach outperforms competitive baselines on five public datasets for both settings: (i) where the number of undiscovered intents are known in advance, and (ii) where the number of intents are estimated by an algorithm. We also propose a human-in-the-loop variant of our approach for practical deployment which does not require an estimate of new intents and outperforms the end-to-end approach.

2020

pdf bib
A Novel Hierarchical BERT Architecture for Sarcasm Detection
Himani Srivastava | Vaibhav Varshney | Surabhi Kumari | Saurabh Srivastava
Proceedings of the Second Workshop on Figurative Language Processing

Online discussion platforms are often flooded with opinions from users across the world on a variety of topics. Many such posts, comments, or utterances are often sarcastic in nature, i.e., the actual intent is hidden in the sentence and is different from its literal meaning, making the detection of such utterances challenging without additional context. In this paper, we propose a novel deep learning-based approach to detect whether an utterance is sarcastic or non-sarcastic by utilizing the given contexts ina hierarchical manner. We have used datasets from two online discussion platforms - Twitter and Reddit1for our experiments. Experimental and error analysis shows that the hierarchical models can make full use of history to obtain a better representation of contexts and thus, in turn, can outperform their sequential counterparts.