Varvara Arzt


2024

pdf bib
Beyond the Numbers: Transparency in Relation Extraction Benchmark Creation and Leaderboards
Varvara Arzt | Allan Hanbury
Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP

This paper investigates the transparency in the creation of benchmarks and the use of leaderboards for measuring progress in NLP, with a focus on the relation extraction (RE) task. Existing RE benchmarks often suffer from insufficient documentation, lacking crucial details such as data sources, inter-annotator agreement, the algorithms used for the selection of instances for datasets, and information on potential biases like dataset imbalance. Progress in RE is frequently measured by leaderboards that rank systems based on evaluation methods, typically limited to aggregate metrics like F1-score. However, the absence of detailed performance analysis beyond these metrics can obscure the true generalisation capabilities of models. Our analysis reveals that widely used RE benchmarks, such as TACRED and NYT, tend to be highly imbalanced and contain noisy labels. Moreover, the lack of class-based performance metrics fails to accurately reflect model performance across datasets with a large number of relation types. These limitations should be carefully considered when reporting progress in RE. While our discussion centers on the transparency of RE benchmarks and leaderboards, the observations we discuss are broadly applicable to other NLP tasks as well. Rather than undermining the significance and value of existing RE benchmarks and the development of new models, this paper advocates for improved documentation and more rigorous evaluation to advance the field.

pdf bib
TU Wien at SemEval-2024 Task 6: Unifying Model-Agnostic and Model-Aware Techniques for Hallucination Detection
Varvara Arzt | Mohammad Mahdi Azarbeik | Ilya Lasy | Tilman Kerl | Gábor Recski
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This paper discusses challenges in Natural Language Generation (NLG), specifically addressing neural networks producing output that is fluent but incorrect, leading to “hallucinations”. The SHROOM shared task involves Large Language Models in various tasks, and our methodology employs both model-agnostic and model-aware approaches for hallucination detection. The limited availability of labeled training data is addressed through automatic label generation strategies. Model-agnostic methods include word alignment and fine-tuning a BERT-based pretrained model, while model-aware methods leverage separate classifiers trained on LLMs’ internal data (layer activations and attention values). Ensemble methods combine outputs through various techniques such as regression metamodels, voting, and probability fusion. Our best performing systems achieved an accuracy of 80.6% on the model-aware track and 81.7% on the model-agnostic track, ranking 3rd and 8th among all systems, respectively.