Vera Gor


2022

pdf bib
Discourse-Aware Soft Prompting for Text Generation
Marjan Ghazvininejad | Vladimir Karpukhin | Vera Gor | Asli Celikyilmaz
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Current efficient fine-tuning methods(e.g., adapters, prefix-tuning, etc.) have optimized conditional text generation via training a small set of extra parameters of the neural language model, while freezing the rest for efficiency. While showing strong performance on some generation tasks, they don’t generalize across all generation tasks. We show that soft-prompt based conditional text generation can be improved with simple and efficient methods that simulate modeling the discourse structure of human written text.We investigate two design choices: First, we apply hierarchical blocking on the prefix parameters to simulate a higher-level discourse structure of human written text. Second, we apply attention sparsity on the prefix parameters at different layers of the network and learn sparse transformations on the softmax-function. We show that structured design of prefix parameters yields more coherent, faithful and relevant generations than the baseline prefix-tuning on all generation tasks.