Vera Pavlova


2024

pdf bib
Building an Efficient Multilingual Non-Profit IR System for the Islamic Domain Leveraging Multiprocessing Design in Rust
Vera Pavlova | Mohammed Makhlouf
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

The widespread use of large language models (LLMs) has dramatically improved many applications of Natural Language Processing (NLP), including Information Retrieval (IR). However, domains that are not driven by commercial interest often lag behind in benefiting from AI-powered solutions. One such area is religious and heritage corpora. Alongside similar domains, Islamic literature holds significant cultural value and is regularly utilized by scholars and the general public. Navigating this extensive amount of text is challenging, and there is currently no unified resource that allows for easy searching of this data using advanced AI tools. This work focuses on the development of a multilingual non-profit IR system for the Islamic domain. This process brings a few major challenges, such as preparing multilingual domain-specific corpora when data is limited in certain languages, deploying a model on resource-constrained devices, and enabling fast search on a limited budget. By employing methods like continued pre-training for domain adaptation and language reduction to decrease model size, a lightweight multilingual retrieval model was prepared, demonstrating superior performance compared to larger models pre-trained on general domain data. Furthermore, evaluating the proposed architecture that utilizes Rust Language capabilities shows the possibility of implementing efficient semantic search in a low-resource setting.

2023

pdf bib
Leveraging Domain Adaptation and Data Augmentation to Improve Qur’anic IR in English and Arabic
Vera Pavlova
Proceedings of ArabicNLP 2023

In this work, we approach the problem of Qur’anic information retrieval (IR) in Arabic and English. Using the latest state-of-the-art methods in neural IR, we research what helps to tackle this task more efficiently. Training retrieval models requires a lot of data, which is difficult to obtain for training in-domain. Therefore, we commence with training on a large amount of general domain data and then continue training on in-domain data. To handle the lack of in-domain data, we employed a data augmentation technique, which considerably improved results in MRR@10 and NDCG@5 metrics, setting the state-of-the-art in Qur’anic IR for both English and Arabic. The absence of an Islamic corpus and domain-specific model for IR task in English motivated us to address this lack of resources and take preliminary steps of the Islamic corpus compilation and domain-specific language model (LM) pre-training, which helped to improve the performance of the retrieval models that use the domain-specific LM as the shared backbone. We examined several language models (LMs) in Arabic to select one that efficiently deals with the Qur’anic IR task. Besides transferring successful experiments from English to Arabic, we conducted additional experiments with retrieval task in Arabic to amortize the scarcity of general domain datasets used to train the retrieval models. Handling Qur’anic IR task combining English and Arabic allowed us to enhance the comparison and share valuable insights across models and languages.

pdf bib
BIOptimus: Pre-training an Optimal Biomedical Language Model with Curriculum Learning for Named Entity Recognition
Vera Pavlova | Mohammed Makhlouf
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

Using language models (LMs) pre-trained in a self-supervised setting on large corpora and then fine-tuning for a downstream task has helped to deal with the problem of limited label data for supervised learning tasks such as Named Entity Recognition (NER). Recent research in biomedical language processing has offered a number of biomedical LMs pre-trained using different methods and techniques that advance results on many BioNLP tasks, including NER. However, there is still a lack of a comprehensive comparison of pre-training approaches that would work more optimally in the biomedical domain. This paper aims to investigate different pre-training methods, such as pre-training the biomedical LM from scratch and pre-training it in a continued fashion. We compare existing methods with our proposed pre-training method of initializing weights for new tokens by distilling existing weights from the BERT model inside the context where the tokens were found. The method helps to speed up the pre-training stage and improve performance on NER. In addition, we compare how masking rate, corruption strategy, and masking strategies impact the performance of the biomedical LM. Finally, using the insights from our experiments, we introduce a new biomedical LM (BIOptimus), which is pre-trained using Curriculum Learning (CL) and contextualized weight distillation method. Our model sets new states of the art on several biomedical Named Entity Recognition (NER) tasks. We release our code and all pre-trained models.