Natural language explanations (NLEs) are vital for elucidating the reasoning behind large language model (LLM) decisions. Many techniques have been developed to generate NLEs using LLMs. However, like humans, LLMs might not always produce optimal NLEs on first attempt. Inspired by human learning processes, we introduce Cross-Refine, which employs role modeling by deploying two LLMs as generator and critic, respectively. The generator outputs a first NLE and then refines this initial explanation using feedback and suggestions provided by the critic. Cross-Refine does not require any supervised training data or additional training. We validate Cross-Refine across three NLP tasks using three state-of-the-art open-source LLMs through automatic and human evaluation. We select Self-Refine (Madaan et al., 2023) as the baseline, which only utilizes self-feedback to refine the explanations. Our findings from automatic evaluation and a user study indicate that Cross-Refine outperforms Self-Refine. Meanwhile, Cross-Refine can perform effectively with less powerful LLMs, whereas Self-Refine only yields strong results with ChatGPT. Additionally, we conduct an ablation study to assess the importance of feedback and suggestions. Both of them play an important role in refining explanations. We further evaluate Cross-Refine on a bilingual dataset in English and German.
In an era where political discourse infiltrates online platforms and news media, identifying opinion is increasingly critical, especially in news articles, where objectivity is expected. Readers frequently encounter authors’ inherent political viewpoints, challenging them to discern facts from opinions. Classifying text on a spectrum from left to right is a key task for uncovering these viewpoints. Previous approaches rely on outdated datasets to classify current articles, neglecting that political opinions on certain subjects change over time. This paper explores a novel methodology for detecting political leaning in news articles by augmenting them with political speeches specific to the topic and publication time. We evaluated the impact of the augmentation using BERT and Mistral models. The results show that the BERT model’s F1 score improved from a baseline of 0.82 to 0.85, while the Mistral model’s F1 score increased from 0.30 to 0.31.
With the rise of Large Generative AI Models (LGAIMs), disinformation online has become more concerning than ever before. Within the super-election year 2024, the influence of mis- and disinformation can severely influence public opinion. To combat the increasing amount of disinformation online, humans need to be supported by AI-based tools to increase the effectiveness of detecting false content. This paper examines the critical intersection of the AI Act with the deployment of LGAIMs for disinformation detection and the implications from research, deployer, and the user’s perspective. The utilization of LGAIMs for disinformation detection falls under the high-risk category defined in the AI Act, leading to several obligations that need to be followed after the enforcement of the AI Act. Among others, the obligations include risk management, transparency, and human oversight which pose the challenge of finding adequate technical interpretations. Furthermore, the paper articulates the necessity for clear guidelines and standards that enable the effective, ethical, and legally compliant use of AI. The paper contributes to the discourse on balancing technological advancement with ethical and legal imperatives, advocating for a collaborative approach to utilizing LGAIMs in safeguarding information integrity and fostering trust in digital ecosystems.