Vicente Ordonez


2020

pdf bib
Using Visual Feature Space as a Pivot Across Languages
Ziyan Yang | Leticia Pinto-Alva | Franck Dernoncourt | Vicente Ordonez
Findings of the Association for Computational Linguistics: EMNLP 2020

Our work aims to leverage visual feature space to pass information across languages. We show that models trained to generate textual captions in more than one language conditioned on an input image can leverage their jointly trained feature space during inference to pivot across languages. We particularly demonstrate improved quality on a caption generated from an input image, by leveraging a caption in a second language. More importantly, we demonstrate that even without conditioning on any visual input, the model demonstrates to have learned implicitly to perform to some extent machine translation from one language to another in their shared visual feature space. We show results in German-English, and Japanese-English language pairs that pave the way for using the visual world to learn a common representation for language.

pdf bib
Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation
Tianlu Wang | Xi Victoria Lin | Nazneen Fatema Rajani | Bryan McCann | Vicente Ordonez | Caiming Xiong
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Word embeddings derived from human-generated corpora inherit strong gender bias which can be further amplified by downstream models. Some commonly adopted debiasing approaches, including the seminal Hard Debias algorithm, apply post-processing procedures that project pre-trained word embeddings into a subspace orthogonal to an inferred gender subspace. We discover that semantic-agnostic corpus regularities such as word frequency captured by the word embeddings negatively impact the performance of these algorithms. We propose a simple but effective technique, Double Hard Debias, which purifies the word embeddings against such corpus regularities prior to inferring and removing the gender subspace. Experiments on three bias mitigation benchmarks show that our approach preserves the distributional semantics of the pre-trained word embeddings while reducing gender bias to a significantly larger degree than prior approaches.

2019

bib
Bias and Fairness in Natural Language Processing
Kai-Wei Chang | Vinod Prabhakaran | Vicente Ordonez
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts

Recent advances in data-driven machine learning techniques (e.g., deep neural networks) have revolutionized many natural language processing applications. These approaches automatically learn how to make decisions based on the statistics and diagnostic information from large amounts of training data. Despite the remarkable accuracy of machine learning in various applications, learning algorithms run the risk of relying on societal biases encoded in the training data to make predictions. This often occurs even when gender and ethnicity information is not explicitly provided to the system because learning algorithms are able to discover implicit associations between individuals and their demographic information based on other variables such as names, titles, home addresses, etc. Therefore, machine learning algorithms risk potentially encouraging unfair and discriminatory decision making and raise serious privacy concerns. Without properly quantifying and reducing the reliance on such correlations, broad adoption of these models might have the undesirable effect of magnifying harmful stereotypes or implicit biases that rely on sensitive demographic attributes.In this tutorial, we will review the history of bias and fairness studies in machine learning and language processing and present recent community effort in quantifying and mitigating bias in natural language processing models for a wide spectrum of tasks, including word embeddings, co-reference resolution, machine translation, and vision-and-language tasks. In particular, we will focus on the following topics:+ Definitions of fairness and bias.+ Data, algorithms, and models that propagate and even amplify social bias to NLP applications and metrics to quantify these biases.+ Algorithmic solutions; learning objective; design principles to prevent social bias in NLP systems and their potential drawbacks.The tutorial will bring researchers and practitioners to be aware of this issue, and encourage the research community to propose innovative solutions to promote fairness in NLP.

pdf bib
Gender Bias in Contextualized Word Embeddings
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Ryan Cotterell | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper, we quantify, analyze and mitigate gender bias exhibited in ELMo’s contextualized word vectors. First, we conduct several intrinsic analyses and find that (1) training data for ELMo contains significantly more male than female entities, (2) the trained ELMo embeddings systematically encode gender information and (3) ELMo unequally encodes gender information about male and female entities. Then, we show that a state-of-the-art coreference system that depends on ELMo inherits its bias and demonstrates significant bias on the WinoBias probing corpus. Finally, we explore two methods to mitigate such gender bias and show that the bias demonstrated on WinoBias can be eliminated.

pdf bib
Chat-crowd: A Dialog-based Platform for Visual Layout Composition
Paola Cascante-Bonilla | Xuwang Yin | Vicente Ordonez | Song Feng
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

In this paper we introduce Chat-crowd, an interactive environment for visual layout composition via conversational interactions. Chat-crowd supports multiple agents with two conversational roles: agents who play the role of a designer are in charge of placing objects in an editable canvas according to instructions or commands issued by agents with a director role. The system can be integrated with crowdsourcing platforms for both synchronous and asynchronous data collection and is equipped with comprehensive quality controls on the performance of both types of agents. We expect that this system will be useful to build multimodal goal-oriented dialog tasks that require spatial and geometric reasoning.

2018

pdf bib
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

In this paper, we introduce a new benchmark for co-reference resolution focused on gender bias, WinoBias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing datasets.

2017

pdf bib
Obj2Text: Generating Visually Descriptive Language from Object Layouts
Xuwang Yin | Vicente Ordonez
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Generating captions for images is a task that has recently received considerable attention. Another type of visual inputs are abstract scenes or object layouts where the only information provided is a set of objects and their locations. This type of imagery is commonly found in many applications in computer graphics, virtual reality, and storyboarding. We explore in this paper OBJ2TEXT, a sequence-to-sequence model that encodes a set of objects and their locations as an input sequence using an LSTM network, and decodes this representation using an LSTM language model. We show in our paper that this model despite using a sequence encoder can effectively represent complex spatial object-object relationships and produce descriptions that are globally coherent and semantically relevant. We test our approach for the task of describing object layouts in the MS-COCO dataset by producing sentences given only object annotations. We additionally show that our model combined with a state-of-the-art object detector can improve the accuracy of an image captioning model.

pdf bib
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Language is increasingly being used to de-fine rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively。

2016

pdf bib
Stating the Obvious: Extracting Visual Common Sense Knowledge
Mark Yatskar | Vicente Ordonez | Ali Farhadi
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2014

pdf bib
TreeTalk: Composition and Compression of Trees for Image Descriptions
Polina Kuznetsova | Vicente Ordonez | Tamara L. Berg | Yejin Choi
Transactions of the Association for Computational Linguistics, Volume 2

We present a new tree based approach to composing expressive image descriptions that makes use of naturally occuring web images with captions. We investigate two related tasks: image caption generalization and generation, where the former is an optional subtask of the latter. The high-level idea of our approach is to harvest expressive phrases (as tree fragments) from existing image descriptions, then to compose a new description by selectively combining the extracted (and optionally pruned) tree fragments. Key algorithmic components are tree composition and compression, both integrating tree structure with sequence structure. Our proposed system attains significantly better performance than previous approaches for both image caption generalization and generation. In addition, our work is the first to show the empirical benefit of automatically generalized captions for composing natural image descriptions.

pdf bib
ReferItGame: Referring to Objects in Photographs of Natural Scenes
Sahar Kazemzadeh | Vicente Ordonez | Mark Matten | Tamara Berg
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2013

pdf bib
Generalizing Image Captions for Image-Text Parallel Corpus
Polina Kuznetsova | Vicente Ordonez | Alexander Berg | Tamara Berg | Yejin Choi
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2012

pdf bib
Collective Generation of Natural Image Descriptions
Polina Kuznetsova | Vicente Ordonez | Alexander Berg | Tamara Berg | Yejin Choi
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)