Victor Bursztyn


2022

pdf bib
Learning to Perform Complex Tasks through Compositional Fine-Tuning of Language Models
Victor Bursztyn | David Demeter | Doug Downey | Larry Birnbaum
Findings of the Association for Computational Linguistics: EMNLP 2022

How to usefully encode compositional task structure has long been a core challenge in AI. Recent work in chain of thought prompting has shown that for very large neural language models (LMs), explicitly demonstrating the inferential steps involved in a target task may improve performance over end-to-end learning that focuses on the target task alone. However, chain of thought prompting has significant limitations due to its dependency on huge pretrained LMs. In this work, we present compositional fine-tuning (CFT): an approach based on explicitly decomposing a target task into component tasks, and then fine-tuning smaller LMs on a curriculum of such component tasks. We apply CFT to recommendation tasks in two domains, world travel and local dining, as well as a previously studied inferential task (sports understanding). We show that CFT outperforms end-to-end learning even with equal amounts of data, and gets consistently better as more component tasks are modeled via fine-tuning. Compared with chain of thought prompting, CFT performs at least as well using LMs only 7.4% of the size, and is moreover applicable to task domains for which data are not available during pretraining.

2021

pdf bib
“It doesn’t look good for a date”: Transforming Critiques into Preferences for Conversational Recommendation Systems
Victor Bursztyn | Jennifer Healey | Nedim Lipka | Eunyee Koh | Doug Downey | Larry Birnbaum
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Conversations aimed at determining good recommendations are iterative in nature. People often express their preferences in terms of a critique of the current recommendation (e.g., “It doesn’t look good for a date”), requiring some degree of common sense for a preference to be inferred. In this work, we present a method for transforming a user critique into a positive preference (e.g., “I prefer more romantic”) in order to retrieve reviews pertaining to potentially better recommendations (e.g., “Perfect for a romantic dinner”). We leverage a large neural language model (LM) in a few-shot setting to perform critique-to-preference transformation, and we test two methods for retrieving recommendations: one that matches embeddings, and another that fine-tunes an LM for the task. We instantiate this approach in the restaurant domain and evaluate it using a new dataset of restaurant critiques. In an ablation study, we show that utilizing critique-to-preference transformation improves recommendations, and that there are at least three general cases that explain this improved performance.