Victor Prokhorov


2023

pdf bib
StrAE: Autoencoding for Pre-Trained Embeddings using Explicit Structure
Mattia Opper | Victor Prokhorov | Siddharth N
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

This work presents StrAE: a Structured Autoencoder framework that through strict adherence to explicit structure, and use of a novel contrastive objective over tree-structured representations, enables effective learning of multi-level representations. Through comparison over different forms of structure, we verify that our results are directly attributable to the informativeness of the structure provided as input, and show that this is not the case for existing tree models. We then further extend StrAE to allow the model to define its own compositions using a simple localised-merge algorithm. This variant, called Self-StrAE, outperforms baselines that don’t involve explicit hierarchical compositions, and is comparable to models given informative structure (e.g. constituency parses). Our experiments are conducted in a data-constrained (circa 10M tokens) setting to help tease apart the contribution of the inductive bias to effective learning. However, we find that this framework can be robust to scale, and when extended to a much larger dataset (circa 100M tokens), our 430 parameter model performs comparably to a 6-layer RoBERTa many orders of magnitude larger in size. Our findings support the utility of incorporating explicit composition as an inductive bias for effective representation learning.

2021

pdf bib
Learning Sparse Sentence Encoding without Supervision: An Exploration of Sparsity in Variational Autoencoders
Victor Prokhorov | Yingzhen Li | Ehsan Shareghi | Nigel Collier
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

It has been long known that sparsity is an effective inductive bias for learning efficient representation of data in vectors with fixed dimensionality, and it has been explored in many areas of representation learning. Of particular interest to this work is the investigation of the sparsity within the VAE framework which has been explored a lot in the image domain, but has been lacking even a basic level of exploration in NLP. Additionally, NLP is also lagging behind in terms of learning sparse representations of large units of text e.g., sentences. We use the VAEs that induce sparse latent representations of large units of text to address the aforementioned shortcomings. First, we move in this direction by measuring the success of unsupervised state-of-the-art (SOTA) and other strong VAE-based sparsification baselines for text and propose a hierarchical sparse VAE model to address the stability issue of SOTA. Then, we look at the implications of sparsity on text classification across 3 datasets, and highlight a link between performance of sparse latent representations on downstream tasks and its ability to encode task-related information.

pdf bib
Unsupervised Representation Disentanglement of Text: An Evaluation on Synthetic Datasets
Lan Zhang | Victor Prokhorov | Ehsan Shareghi
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

To highlight the challenges of achieving representation disentanglement for text domain in an unsupervised setting, in this paper we select a representative set of successfully applied models from the image domain. We evaluate these models on 6 disentanglement metrics, as well as on downstream classification tasks and homotopy. To facilitate the evaluation, we propose two synthetic datasets with known generative factors. Our experiments highlight the existing gap in the text domain and illustrate that certain elements such as representation sparsity (as an inductive bias), or representation coupling with the decoder could impact disentanglement. To the best of our knowledge, our work is the first attempt on the intersection of unsupervised representation disentanglement and text, and provides the experimental framework and datasets for examining future developments in this direction.

2019

pdf bib
On the Importance of the Kullback-Leibler Divergence Term in Variational Autoencoders for Text Generation
Victor Prokhorov | Ehsan Shareghi | Yingzhen Li | Mohammad Taher Pilehvar | Nigel Collier
Proceedings of the 3rd Workshop on Neural Generation and Translation

Variational Autoencoders (VAEs) are known to suffer from learning uninformative latent representation of the input due to issues such as approximated posterior collapse, or entanglement of the latent space. We impose an explicit constraint on the Kullback-Leibler (KL) divergence term inside the VAE objective function. While the explicit constraint naturally avoids posterior collapse, we use it to further understand the significance of the KL term in controlling the information transmitted through the VAE channel. Within this framework, we explore different properties of the estimated posterior distribution, and highlight the trade-off between the amount of information encoded in a latent code during training, and the generative capacity of the model.

pdf bib
Generating Knowledge Graph Paths from Textual Definitions using Sequence-to-Sequence Models
Victor Prokhorov | Mohammad Taher Pilehvar | Nigel Collier
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We present a novel method for mapping unrestricted text to knowledge graph entities by framing the task as a sequence-to-sequence problem. Specifically, given the encoded state of an input text, our decoder directly predicts paths in the knowledge graph, starting from the root and ending at the the target node following hypernym-hyponym relationships. In this way, and in contrast to other text-to-entity mapping systems, our model outputs hierarchically structured predictions that are fully interpretable in the context of the underlying ontology, in an end-to-end manner. We present a proof-of-concept experiment with encouraging results, comparable to those of state-of-the-art systems.

2018

pdf bib
Card-660: Cambridge Rare Word Dataset - a Reliable Benchmark for Infrequent Word Representation Models
Mohammad Taher Pilehvar | Dimitri Kartsaklis | Victor Prokhorov | Nigel Collier
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Rare word representation has recently enjoyed a surge of interest, owing to the crucial role that effective handling of infrequent words can play in accurate semantic understanding. However, there is a paucity of reliable benchmarks for evaluation and comparison of these techniques. We show in this paper that the only existing benchmark (the Stanford Rare Word dataset) suffers from low-confidence annotations and limited vocabulary; hence, it does not constitute a solid comparison framework. In order to fill this evaluation gap, we propose Cambridge Rare word Dataset (Card-660), an expert-annotated word similarity dataset which provides a highly reliable, yet challenging, benchmark for rare word representation techniques. Through a set of experiments we show that even the best mainstream word embeddings, with millions of words in their vocabularies, are unable to achieve performances higher than 0.43 (Pearson correlation) on the dataset, compared to a human-level upperbound of 0.90. We release the dataset and the annotation materials at https://pilehvar.github.io/card-660/.