Vidur Joshi


pdf bib
Knowledge Enhanced Contextual Word Representations
Matthew E. Peters | Mark Neumann | Robert Logan | Roy Schwartz | Vidur Joshi | Sameer Singh | Noah A. Smith
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Contextual word representations, typically trained on unstructured, unlabeled text, do not contain any explicit grounding to real world entities and are often unable to remember facts about those entities. We propose a general method to embed multiple knowledge bases (KBs) into large scale models, and thereby enhance their representations with structured, human-curated knowledge. For each KB, we first use an integrated entity linker to retrieve relevant entity embeddings, then update contextual word representations via a form of word-to-entity attention. In contrast to previous approaches, the entity linkers and self-supervised language modeling objective are jointly trained end-to-end in a multitask setting that combines a small amount of entity linking supervision with a large amount of raw text. After integrating WordNet and a subset of Wikipedia into BERT, the knowledge enhanced BERT (KnowBert) demonstrates improved perplexity, ability to recall facts as measured in a probing task and downstream performance on relationship extraction, entity typing, and word sense disambiguation. KnowBert’s runtime is comparable to BERT’s and it scales to large KBs.


pdf bib
Extending a Parser to Distant Domains Using a Few Dozen Partially Annotated Examples
Vidur Joshi | Matthew Peters | Mark Hopkins
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We revisit domain adaptation for parsers in the neural era. First we show that recent advances in word representations greatly diminish the need for domain adaptation when the target domain is syntactically similar to the source domain. As evidence, we train a parser on the Wall Street Journal alone that achieves over 90% F1 on the Brown corpus. For more syntactically distant domains, we provide a simple way to adapt a parser using only dozens of partial annotations. For instance, we increase the percentage of error-free geometry-domain parses in a held-out set from 45% to 73% using approximately five dozen training examples. In the process, we demonstrate a new state-of-the-art single model result on the Wall Street Journal test set of 94.3%. This is an absolute increase of 1.7% over the previous state-of-the-art of 92.6%.


pdf bib
Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers
Mark Hopkins | Cristian Petrescu-Prahova | Roie Levin | Ronan Le Bras | Alvaro Herrasti | Vidur Joshi
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We present an approach for answering questions that span multiple sentences and exhibit sophisticated cross-sentence anaphoric phenomena, evaluating on a rich source of such questions – the math portion of the Scholastic Aptitude Test (SAT). By using a tree transducer cascade as its basic architecture, our system propagates uncertainty from multiple sources (e.g. coreference resolution or verb interpretation) until it can be confidently resolved. Experiments show the first-ever results 43% recall and 91% precision) on SAT algebra word problems. We also apply our system to the public Dolphin algebra question set, and improve the state-of-the-art F1-score from 73.9% to 77.0%.

pdf bib
Interactive Visualization for Linguistic Structure
Aaron Sarnat | Vidur Joshi | Cristian Petrescu-Prahova | Alvaro Herrasti | Brandon Stilson | Mark Hopkins
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We provide a visualization library and web interface for interactively exploring a parse tree or a forest of parses. The library is not tied to any particular linguistic representation, but provides a general-purpose API for the interactive exploration of hierarchical linguistic structure. To facilitate rapid understanding of a complex structure, the API offers several important features, including expand/collapse functionality, positional and color cues, explicit visual support for sequential structure, and dynamic highlighting to convey node-to-text correspondence.