Language representations are an efficient tool used across NLP, but they are strife with encoded societal biases. These biases are studied extensively, but with a primary focus on English language representations and biases common in the context of Western society. In this work, we investigate the biases present in Hindi language representations such as caste and religion associated biases. We demonstrate how biases are unique to specific language representations based on the history and culture of the region they are widely spoken in, and also how the same societal bias (such as binary gender associated biases) when investigated across languages is encoded by different words and text spans. With this work, we emphasize on the necessity of social-awareness along with linguistic and grammatical artefacts when modeling language representations, in order to understand the biases encoded.
Legal documents are unstructured, use legal jargon, and have considerable length, making them difficult to process automatically via conventional text processing techniques. A legal document processing system would benefit substantially if the documents could be segmented into coherent information units. This paper proposes a new corpus of legal documents annotated (with the help of legal experts) with a set of 13 semantically coherent units labels (referred to as Rhetorical Roles), e.g., facts, arguments, statute, issue, precedent, ruling, and ratio. We perform a thorough analysis of the corpus and the annotations. For automatically segmenting the legal documents, we experiment with the task of rhetorical role prediction: given a document, predict the text segments corresponding to various roles. Using the created corpus, we experiment extensively with various deep learning-based baseline models for the task. Further, we develop a multitask learning (MTL) based deep model with document rhetorical role label shift as an auxiliary task for segmenting a legal document. The proposed model shows superior performance over the existing models. We also experiment with model performance in the case of domain transfer and model distillation techniques to see the model performance in limited data conditions.
Recently, there has been an interest in the research on factual verification and prediction over structured data like tables and graphs. To circumvent any false news incident, it is necessary to not only model and predict over structured data efficiently but also to explain those predictions. In this paper, as the part of the SemEval-2021 Task 9, we tackle the problem of fact verification and evidence finding over tabular data. There are two subtasks, in which given a table and a statement/fact, the subtask A is to determine whether the statement is inferred from the tabular data and the subtask B is to determine which cells in the table provide evidence for the former subtask. We make a comparison of the baselines and state of the art approaches over the given SemTabFact dataset. We also propose a novel approach CellBERT to solve the task of evidence finding, as a form of Natural Language Inference task. We obtain a 3-way F1 score of 0.69 on subtask A and an F1 score of 0.65 on subtask B.
An automated system that could assist a judge in predicting the outcome of a case would help expedite the judicial process. For such a system to be practically useful, predictions by the system should be explainable. To promote research in developing such a system, we introduce ILDC (Indian Legal Documents Corpus). ILDC is a large corpus of 35k Indian Supreme Court cases annotated with original court decisions. A portion of the corpus (a separate test set) is annotated with gold standard explanations by legal experts. Based on ILDC, we propose the task of Court Judgment Prediction and Explanation (CJPE). The task requires an automated system to predict an explainable outcome of a case. We experiment with a battery of baseline models for case predictions and propose a hierarchical occlusion based model for explainability. Our best prediction model has an accuracy of 78% versus 94% for human legal experts, pointing towards the complexity of the prediction task. The analysis of explanations by the proposed algorithm reveals a significant difference in the point of view of the algorithm and legal experts for explaining the judgments, pointing towards scope for future research.
Deep learning models are susceptible to adversarial examples that have imperceptible perturbations in the original input, resulting in adversarial attacks against these models. Analysis of these attacks on the state of the art transformers in NLP can help improve the robustness of these models against such adversarial inputs. In this paper, we present Adv-OLM, a black-box attack method that adapts the idea of Occlusion and Language Models (OLM) to the current state of the art attack methods. OLM is used to rank words of a sentence, which are later substituted using word replacement strategies. We experimentally show that our approach outperforms other attack methods for several text classification tasks.