Vijjini Anvesh Rao


2019

pdf bib
Sequential Learning of Convolutional Features for Effective Text Classification
Avinash Madasu | Vijjini Anvesh Rao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text classification has been one of the major problems in natural language processing. With the advent of deep learning, convolutional neural network (CNN) has been a popular solution to this task. However, CNNs which were first proposed for images, face many crucial challenges in the context of text processing, namely in their elementary blocks: convolution filters and max pooling. These challenges have largely been overlooked by the most existing CNN models proposed for text classification. In this paper, we present an experimental study on the fundamental blocks of CNNs in text categorization. Based on this critique, we propose Sequential Convolutional Attentive Recurrent Network (SCARN). The proposed SCARN model utilizes both the advantages of recurrent and convolutional structures efficiently in comparison to previously proposed recurrent convolutional models. We test our model on different text classification datasets across tasks like sentiment analysis and question classification. Extensive experiments establish that SCARN outperforms other recurrent convolutional architectures with significantly less parameters. Furthermore, SCARN achieves better performance compared to equally large various deep CNN and LSTM architectures.

2018

pdf bib
Twitter corpus of Resource-Scarce Languages for Sentiment Analysis and Multilingual Emoji Prediction
Nurendra Choudhary | Rajat Singh | Vijjini Anvesh Rao | Manish Shrivastava
Proceedings of the 27th International Conference on Computational Linguistics

In this paper, we leverage social media platforms such as twitter for developing corpus across multiple languages. The corpus creation methodology is applicable for resource-scarce languages provided the speakers of that particular language are active users on social media platforms. We present an approach to extract social media microblogs such as tweets (Twitter). In this paper, we create corpus for multilingual sentiment analysis and emoji prediction in Hindi, Bengali and Telugu. Further, we perform and analyze multiple NLP tasks utilizing the corpus to get interesting observations.

pdf bib
BCSAT : A Benchmark Corpus for Sentiment Analysis in Telugu Using Word-level Annotations
Sreekavitha Parupalli | Vijjini Anvesh Rao | Radhika Mamidi
Proceedings of ACL 2018, Student Research Workshop

The presented work aims at generating a systematically annotated corpus that can support the enhancement of sentiment analysis tasks in Telugu using word-level sentiment annotations. From OntoSenseNet, we extracted 11,000 adjectives, 253 adverbs, 8483 verbs and sentiment annotation is being done by language experts. We discuss the methodology followed for the polarity annotations and validate the developed resource. This work aims at developing a benchmark corpus, as an extension to SentiWordNet, and baseline accuracy for a model where lexeme annotations are applied for sentiment predictions. The fundamental aim of this paper is to validate and study the possibility of utilizing machine learning algorithms, word-level sentiment annotations in the task of automated sentiment identification. Furthermore, accuracy is improved by annotating the bi-grams extracted from the target corpus.

pdf bib
Towards Automation of Sense-type Identification of Verbs in OntoSenseNet
Sreekavitha Parupalli | Vijjini Anvesh Rao | Radhika Mamidi
Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media

In this paper, we discuss the enrichment of a manually developed resource, OntoSenseNet for Telugu. OntoSenseNet is a sense annotated resource that marks each verb of Telugu with a primary and a secondary sense. The area of research is relatively recent but has a large scope of development. We provide an introductory work to enrich the OntoSenseNet to promote further research in Telugu. Classifiers are adopted to learn the sense relevant features of the words in the resource and also to automate the tagging of sense-types for verbs. We perform a comparative analysis of different classifiers applied on OntoSenseNet. The results of the experiment prove that automated enrichment of the resource is effective using SVM classifiers and Adaboost ensemble.

pdf bib
Towards Enhancing Lexical Resource and Using Sense-annotations of OntoSenseNet for Sentiment Analysis
Sreekavitha Parupalli | Vijjini Anvesh Rao | Radhika Mamidi
Proceedings of the Third Workshop on Semantic Deep Learning

This paper illustrates the interface of the tool we developed for crowd sourcing and we explain the annotation procedure in detail. Our tool is named as ‘పారుపల్లి పదజాలం’ (Parupalli Padajaalam) which means web of words by Parupalli. The aim of this tool is to populate the OntoSenseNet, sentiment polarity annotated Telugu resource. Recent works have shown the importance of word-level annotations on sentiment analysis. With this as basis, we aim to analyze the importance of sense-annotations obtained from OntoSenseNet in performing the task of sentiment analysis. We explain the features extracted from OntoSenseNet (Telugu). Furthermore we compute and explain the adverbial class distribution of verbs in OntoSenseNet. This task is known to aid in disambiguating word-senses which helps in enhancing the performance of word-sense disambiguation (WSD) task(s).