Vilém Zouhar


pdf bib
Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)
Antoine Bosselut | Xiang Li | Bill Yuchen Lin | Vered Shwartz | Bodhisattwa Prasad Majumder | Yash Kumar Lal | Rachel Rudinger | Xiang Ren | Niket Tandon | Vilém Zouhar
Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)

Machine Translate: Open resources and community
Cecilia OL Yalangozian | Vilém Zouhar | Adam Bittlingmayer
Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas (Volume 2: Users and Providers Track and Government Track)

Machine Translate is a non-profit organization on a mission to make machine translation more accessible to more people. As the field of machine translation continues to grow, the project builds open resources and a community for developers, buyers and translators. The project is ruled by three values: quality, openness and accessibility. Content is open-source and welcomes open-contribution. It is kept up-to-date, and its information is presented in a clear and well-organized format. Machine Translate aims to be accessible to people from many backgrounds and, ultimately, also non-English speakers. The project covers everything about machine translation, from products to research, from development to theory, and from history to news. The topics are very diverse, and the writing is focused on concepts rather than on mathematical details.

pdf bib
Knowledge Base Index Compression via Dimensionality and Precision Reduction
Vilém Zouhar | Marius Mosbach | Miaoran Zhang | Dietrich Klakow
Proceedings of the 1st Workshop on Semiparametric Methods in NLP: Decoupling Logic from Knowledge

Recently neural network based approaches to knowledge-intensive NLP tasks, such as question answering, started to rely heavily on the combination of neural retrievers and readers. Retrieval is typically performed over a large textual knowledge base (KB) which requires significant memory and compute resources, especially when scaled up. On HotpotQA we systematically investigate reducing the size of the KB index by means of dimensionality (sparse random projections, PCA, autoencoders) and numerical precision reduction. Our results show that PCA is an easy solution that requires very little data and is only slightly worse than autoencoders, which are less stable. All methods are sensitive to pre- and post-processing and data should always be centered and normalized both before and after dimension reduction. Finally, we show that it is possible to combine PCA with using 1bit per dimension. Overall we achieve (1) 100× compression with 75%, and (2) 24× compression with 92% original retrieval performance.


pdf bib
Neural Machine Translation Quality and Post-Editing Performance
Vilém Zouhar | Martin Popel | Ondřej Bojar | Aleš Tamchyna
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We test the natural expectation that using MT in professional translation saves human processing time. The last such study was carried out by Sanchez-Torron and Koehn (2016) with phrase-based MT, artificially reducing the translation quality. In contrast, we focus on neural MT (NMT) of high quality, which has become the state-of-the-art approach since then and also got adopted by most translation companies. Through an experimental study involving over 30 professional translators for English -> Czech translation, we examine the relationship between NMT performance and post-editing time and quality. Across all models, we found that better MT systems indeed lead to fewer changes in the sentences in this industry setting. The relation between system quality and post-editing time is however not straightforward and, contrary to the results on phrase-based MT, BLEU is definitely not a stable predictor of the time or final output quality.

pdf bib
Backtranslation Feedback Improves User Confidence in MT, Not Quality
Vilém Zouhar | Michal Novák | Matúš Žilinec | Ondřej Bojar | Mateo Obregón | Robin L. Hill | Frédéric Blain | Marina Fomicheva | Lucia Specia | Lisa Yankovskaya
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Translating text into a language unknown to the text’s author, dubbed outbound translation, is a modern need for which the user experience has significant room for improvement, beyond the basic machine translation facility. We demonstrate this by showing three ways in which user confidence in the outbound translation, as well as its overall final quality, can be affected: backward translation, quality estimation (with alignment) and source paraphrasing. In this paper, we describe an experiment on outbound translation from English to Czech and Estonian. We examine the effects of each proposed feedback module and further focus on how the quality of machine translation systems influence these findings and the user perception of success. We show that backward translation feedback has a mixed effect on the whole process: it increases user confidence in the produced translation, but not the objective quality.

pdf bib
Sampling and Filtering of Neural Machine Translation Distillation Data
Vilém Zouhar
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

In most of neural machine translation distillation or stealing scenarios, the highest-scoring hypothesis of the target model (teacher) is used to train a new model (student). If reference translations are also available, then better hypotheses (with respect to the references) can be oversampled and poor hypotheses either removed or undersampled. This paper explores the sampling method landscape (pruning, hypothesis oversampling and undersampling, deduplication and their combination) with English to Czech and English to German MT models using standard MT evaluation metrics. We show that careful oversampling and combination with the original data leads to better performance when compared to training only on the original or synthesized data or their direct combination.


pdf bib
Outbound Translation User Interface Ptakopět: A Pilot Study
Vilém Zouhar | Ondřej Bojar
Proceedings of the Twelfth Language Resources and Evaluation Conference

It is not uncommon for Internet users to have to produce a text in a foreign language they have very little knowledge of and are unable to verify the translation quality. We call the task “outbound translation” and explore it by introducing an open-source modular system Ptakopět. Its main purpose is to inspect human interaction with MT systems enhanced with additional subsystems, such as backward translation and quality estimation. We follow up with an experiment on (Czech) human annotators tasked to produce questions in a language they do not speak (German), with the help of Ptakopět. We focus on three real-world use cases (communication with IT support, describing administrative issues and asking encyclopedic questions) from which we gain insight into different strategies users take when faced with outbound translation tasks. Round trip translation is known to be unreliable for evaluating MT systems but our experimental evaluation documents that it works very well for users, at least on MT systems of mid-range quality.

pdf bib
WMT20 Document-Level Markable Error Exploration
Vilém Zouhar | Tereza Vojtěchová | Ondřej Bojar
Proceedings of the Fifth Conference on Machine Translation

Even though sentence-centric metrics are used widely in machine translation evaluation, document-level performance is at least equally important for professional usage. In this paper, we bring attention to detailed document-level evaluation focused on markables (expressions bearing most of the document meaning) and the negative impact of various markable error phenomena on the translation. For an annotation experiment of two phases, we chose Czech and English documents translated by systems submitted to WMT20 News Translation Task. These documents are from the News, Audit and Lease domains. We show that the quality and also the kind of errors varies significantly among the domains. This systematic variance is in contrast to the automatic evaluation results. We inspect which specific markables are problematic for MT systems and conclude with an analysis of the effect of markable error types on the MT performance measured by humans and automatic evaluation tools.