Vin Sachidananda
2021
Efficient Domain Adaptation of Language Models via Adaptive Tokenization
Vin Sachidananda
|
Jason Kessler
|
Yi-An Lai
Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing
Contextual embedding-based language models trained on large data sets, such as BERT and RoBERTa, provide strong performance across a wide range of tasks and are ubiquitous in modern NLP. It has been observed that fine-tuning these models on tasks involving data from domains different from that on which they were pretrained can lead to suboptimal performance. Recent work has explored approaches to adapt pretrained language models to new domains by incorporating additional pretraining on domain-specific corpora and task data. We propose an alternative approach for transferring pretrained language models to new domains by adapting their tokenizers. We show that domain-specific subword sequences can be determined efficiently directly from divergences in the conditional token distributions of the base and domain-specific corpora. In datasets from four disparate domains, we find adaptive tokenization on a pretrained RoBERTa model provides greater than 85% of the performance benefits of domain specific pretraining. Our approach produces smaller models and less training and inference time than other approaches using tokenizer augmentation. Although using adaptive tokenization incurs a 6% increase in model parameters (due to the introduction of 10k new domain-specific tokens), our approach, using 64 CPUs, is >72x faster than further pretraining the language model on domain-specific corpora on 8 TPUs.
2019
Embedding Imputation with Grounded Language Information
Ziyi Yang
|
Chenguang Zhu
|
Vin Sachidananda
|
Eric Darve
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Due to the ubiquitous use of embeddings as input representations for a wide range of natural language tasks, imputation of embeddings for rare and unseen words is a critical problem in language processing. Embedding imputation involves learning representations for rare or unseen words during the training of an embedding model, often in a post-hoc manner. In this paper, we propose an approach for embedding imputation which uses grounded information in the form of a knowledge graph. This is in contrast to existing approaches which typically make use of vector space properties or subword information. We propose an online method to construct a graph from grounded information and design an algorithm to map from the resulting graphical structure to the space of the pre-trained embeddings. Finally, we evaluate our approach on a range of rare and unseen word tasks across various domains and show that our model can learn better representations. For example, on the Card-660 task our method improves Pearson’s and Spearman’s correlation coefficients upon the state-of-the-art by 11% and 17.8% respectively using GloVe embeddings.
Search