Vincent Barreaud


2022

pdf bib
A Low-Cost Motion Capture Corpus in French Sign Language for Interpreting Iconicity and Spatial Referencing Mechanisms
Clémence Mertz | Vincent Barreaud | Thibaut Le Naour | Damien Lolive | Sylvie Gibet
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The automatic translation of sign language videos into transcribed texts is rarely approached in its whole, as it implies to finely model the grammatical mechanisms that govern these languages. The presented work is a first step towards the interpretation of French sign language (LSF) by specifically targeting iconicity and spatial referencing. This paper describes the LSF-SHELVES corpus as well as the original technology that was designed and implemented to collect it. Our goal is to use deep learning methods to circumvent the use of models in spatial referencing recognition. In order to obtain training material with sufficient variability, we designed a light-weight (and low-cost) capture protocol that enabled us to collect data from a large panel of LSF signers. This protocol involves the use of a portable device providing a 3D skeleton, and of a software developed specifically for this application to facilitate the post-processing of handshapes. The LSF-SHELVES includes simple and compound iconic and spatial dynamics, organized in 6 complexity levels, representing a total of 60 sequences signed by 15 LSF signers.

2008

pdf bib
WEB-Based Listening Test System for Speech Synthesis and Speech Conversion Evaluation
Laurent Blin | Olivier Boeffard | Vincent Barreaud
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

In this article, we propose a web based listening test system that can be used with a large range of listeners. Our main goals were to make the configuration of the tests as simple and flexible as possible, to simplify the recruiting of the testees and, of course, to keep track of the results using a relational database. This first version of our system can perform the most widely used listening tests in the speech processing community (AB-BA, ABX and MOS tests). It can also easily evolve and propose other tests implemented by the tester by means of a module interface. This scenario is explored in this article which proposes an implementation of a module for Comparison Mean Opinion Score (CMOS) tests and conduct of such an experiment. This test allowed us to extract from the BREF120 corpus a couple of voices of distinct supra-segmental characteristics. This system is offered to the speech synthesis and speech conversion community under free license.