Vincenzo Masucci


pdf bib
Is this hotel review truthful or deceptive? A platform for disinformation detection through computational stylometry
Antonio Pascucci | Raffaele Manna | Ciro Caterino | Vincenzo Masucci | Johanna Monti
Proceedings for the First International Workshop on Social Threats in Online Conversations: Understanding and Management

In this paper, we present a web service platform for disinformation detection in hotel reviews written in English. The platform relies on a hybrid approach of computational stylometry techniques, machine learning and linguistic rules written using COGITO, Expert System Corp.’s semantic intelligence software thanks to which it is possible to analyze texts and extract all their characteristics. We carried out a research experiment on the Deceptive Opinion Spam corpus, a balanced corpus composed of 1,600 hotel reviews of 20 Chicago hotels split into four datasets: positive truthful, negative truthful, positive deceptive and negative deceptive reviews. We investigated four different classifiers and we detected that Simple Logistic is the most performing algorithm for this type of classification.

pdf bib
The Role of Computational Stylometry in Identifying (Misogynistic) Aggression in English Social Media Texts
Antonio Pascucci | Raffaele Manna | Vincenzo Masucci | Johanna Monti
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying

In this paper, we describe UniOr_ExpSys team participation in TRAC-2 (Trolling, Aggression and Cyberbullying) shared task, a workshop organized as part of LREC 2020. TRAC-2 shared task is organized in two sub-tasks: Aggression Identification (a 3-way classification between “Overtly Aggressive”, “Covertly Aggressive” and “Non-aggressive” text data) and Misogynistic Aggression Identification (a binary classifier for classifying the texts as “gendered” or “non-gendered”). Our approach is based on linguistic rules, stylistic features extraction through stylometric analysis and Sequential Minimal Optimization algorithm in building the two classifiers.