Vitaly Nikolaev


2023

pdf bib
Measuring Attribution in Natural Language Generation Models
Hannah Rashkin | Vitaly Nikolaev | Matthew Lamm | Lora Aroyo | Michael Collins | Dipanjan Das | Slav Petrov | Gaurav Singh Tomar | Iulia Turc | David Reitter
Computational Linguistics, Volume 49, Issue 4 - December 2023

Large neural models have brought a new challenge to natural language generation (NLG): It has become imperative to ensure the safety and reliability of the output of models that generate freely. To this end, we present an evaluation framework, Attributable to Identified Sources (AIS), stipulating that NLG output pertaining to the external world is to be verified against an independent, provided source. We define AIS and a two-stage annotation pipeline for allowing annotators to evaluate model output according to annotation guidelines. We successfully validate this approach on generation datasets spanning three tasks (two conversational QA datasets, a summarization dataset, and a table-to-text dataset). We provide full annotation guidelines in the appendices and publicly release the annotated data at https://github.com/google-research-datasets/AIS.

pdf bib
SEAHORSE: A Multilingual, Multifaceted Dataset for Summarization Evaluation
Elizabeth Clark | Shruti Rijhwani | Sebastian Gehrmann | Joshua Maynez | Roee Aharoni | Vitaly Nikolaev | Thibault Sellam | Aditya Siddhant | Dipanjan Das | Ankur Parikh
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Reliable automatic evaluation of summarization systems is challenging due to the multifaceted and subjective nature of the task. This is especially the case for languages other than English, where human evaluations are scarce. In this work, we introduce SEAHORSE, a dataset for multilingual, multifaceted summarization evaluation. SEAHORSE consists of 96K summaries with human ratings along 6 dimensions of text quality: comprehensibility, repetition, grammar, attribution, main ideas, and conciseness, covering 6 languages, 9 systems, and 4 datasets. As a result of its size and scope, SEAHORSE can serve both as a benchmark to evaluate learnt metrics, as well as a large-scale resource for training such metrics. We show that metrics trained with SEAHORSE achieve strong performance on the out-of-domain meta-evaluation benchmarks TRUE (Honovich et al., 2022) and mFACE (Aharoni et al., 2022). We make the SEAHORSE dataset and metrics publicly available for future research on multilingual and multifaceted summarization evaluation.

pdf bib
TaTA: A Multilingual Table-to-Text Dataset for African Languages
Sebastian Gehrmann | Sebastian Ruder | Vitaly Nikolaev | Jan Botha | Michael Chavinda | Ankur Parikh | Clara Rivera
Findings of the Association for Computational Linguistics: EMNLP 2023

Existing data-to-text generation datasets are mostly limited to English. To address this lack of data, we create Table-to-Text in African languages (TaTA), the first large multilingual table-to-text dataset with a focus on African languages. We created TaTA by transcribing figures and accompanying text in bilingual reports by the Demographic and Health Surveys Program, followed by professional translation to make the dataset fully parallel. TaTA includes 8,700 examples in nine languages including four African languages (Hausa, Igbo, Swahili, and Yorùbá) and a zero-shot test language (Russian). We additionally release screenshots of the original figures for future research on multilingual multi-modal approaches. Through an in-depth human evaluation, we show that TaTA is challenging for current models and that less than half the outputs from an mT5-XXL-based model are understandable and attributable to the source data. Our results highlight a) the need for validating metrics; and b) the importance of domain-specific metrics.

2022

pdf bib
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Sebastian Gehrmann | Abhik Bhattacharjee | Abinaya Mahendiran | Alex Wang | Alexandros Papangelis | Aman Madaan | Angelina Mcmillan-major | Anna Shvets | Ashish Upadhyay | Bernd Bohnet | Bingsheng Yao | Bryan Wilie | Chandra Bhagavatula | Chaobin You | Craig Thomson | Cristina Garbacea | Dakuo Wang | Daniel Deutsch | Deyi Xiong | Di Jin | Dimitra Gkatzia | Dragomir Radev | Elizabeth Clark | Esin Durmus | Faisal Ladhak | Filip Ginter | Genta Indra Winata | Hendrik Strobelt | Hiroaki Hayashi | Jekaterina Novikova | Jenna Kanerva | Jenny Chim | Jiawei Zhou | Jordan Clive | Joshua Maynez | João Sedoc | Juraj Juraska | Kaustubh Dhole | Khyathi Raghavi Chandu | Laura Perez Beltrachini | Leonardo F . R. Ribeiro | Lewis Tunstall | Li Zhang | Mahim Pushkarna | Mathias Creutz | Michael White | Mihir Sanjay Kale | Moussa Kamal Eddine | Nico Daheim | Nishant Subramani | Ondrej Dusek | Paul Pu Liang | Pawan Sasanka Ammanamanchi | Qi Zhu | Ratish Puduppully | Reno Kriz | Rifat Shahriyar | Ronald Cardenas | Saad Mahamood | Salomey Osei | Samuel Cahyawijaya | Sanja Štajner | Sebastien Montella | Shailza Jolly | Simon Mille | Tahmid Hasan | Tianhao Shen | Tosin Adewumi | Vikas Raunak | Vipul Raheja | Vitaly Nikolaev | Vivian Tsai | Yacine Jernite | Ying Xu | Yisi Sang | Yixin Liu | Yufang Hou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Evaluations in machine learning rarely use the latest metrics, datasets, or human evaluation in favor of remaining compatible with prior work. The compatibility, often facilitated through leaderboards, thus leads to outdated but standardized evaluation practices. We pose that the standardization is taking place in the wrong spot. Evaluation infrastructure should enable researchers to use the latest methods and what should be standardized instead is how to incorporate these new evaluation advances. We introduce GEMv2, the new version of the Generation, Evaluation, and Metrics Benchmark which uses a modular infrastructure for dataset, model, and metric developers to benefit from each other’s work. GEMv2 supports 40 documented datasets in 51 languages, ongoing online evaluation for all datasets, and our interactive tools make it easier to add new datasets to the living benchmark.

2021

pdf bib
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann | Tosin Adewumi | Karmanya Aggarwal | Pawan Sasanka Ammanamanchi | Anuoluwapo Aremu | Antoine Bosselut | Khyathi Raghavi Chandu | Miruna-Adriana Clinciu | Dipanjan Das | Kaustubh Dhole | Wanyu Du | Esin Durmus | Ondřej Dušek | Chris Chinenye Emezue | Varun Gangal | Cristina Garbacea | Tatsunori Hashimoto | Yufang Hou | Yacine Jernite | Harsh Jhamtani | Yangfeng Ji | Shailza Jolly | Mihir Kale | Dhruv Kumar | Faisal Ladhak | Aman Madaan | Mounica Maddela | Khyati Mahajan | Saad Mahamood | Bodhisattwa Prasad Majumder | Pedro Henrique Martins | Angelina McMillan-Major | Simon Mille | Emiel van Miltenburg | Moin Nadeem | Shashi Narayan | Vitaly Nikolaev | Andre Niyongabo Rubungo | Salomey Osei | Ankur Parikh | Laura Perez-Beltrachini | Niranjan Ramesh Rao | Vikas Raunak | Juan Diego Rodriguez | Sashank Santhanam | João Sedoc | Thibault Sellam | Samira Shaikh | Anastasia Shimorina | Marco Antonio Sobrevilla Cabezudo | Hendrik Strobelt | Nishant Subramani | Wei Xu | Diyi Yang | Akhila Yerukola | Jiawei Zhou
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.

pdf bib
Planning with Learned Entity Prompts for Abstractive Summarization
Shashi Narayan | Yao Zhao | Joshua Maynez | Gonçalo Simões | Vitaly Nikolaev | Ryan McDonald
Transactions of the Association for Computational Linguistics, Volume 9

We introduce a simple but flexible mechanism to learn an intermediate plan to ground the generation of abstractive summaries. Specifically, we prepend (or prompt) target summaries with entity chains—ordered sequences of entities mentioned in the summary. Transformer-based sequence-to-sequence models are then trained to generate the entity chain and then continue generating the summary conditioned on the entity chain and the input. We experimented with both pretraining and finetuning with this content planning objective. When evaluated on CNN/DailyMail, XSum, SAMSum, and BillSum, we demonstrate empirically that the grounded generation with the planning objective improves entity specificity and planning in summaries for all datasets, and achieves state-of-the-art performance on XSum and SAMSum in terms of rouge. Moreover, we demonstrate empirically that planning with entity chains provides a mechanism to control hallucinations in abstractive summaries. By prompting the decoder with a modified content plan that drops hallucinated entities, we outperform state-of-the-art approaches for faithfulness when evaluated automatically and by humans.

2020

pdf bib
TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages
Jonathan H. Clark | Eunsol Choi | Michael Collins | Dan Garrette | Tom Kwiatkowski | Vitaly Nikolaev | Jennimaria Palomaki
Transactions of the Association for Computational Linguistics, Volume 8

Confidently making progress on multilingual modeling requires challenging, trustworthy evaluations. We present TyDi QA—a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology—the set of linguistic features each language expresses—such that we expect models performing well on this set to generalize across a large number of the world’s languages. We present a quantitative analysis of the data quality and example-level qualitative linguistic analyses of observed language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but don’t know the answer yet, and the data is collected directly in each language without the use of translation.

2018

pdf bib
Improving homograph disambiguation with supervised machine learning
Kyle Gorman | Gleb Mazovetskiy | Vitaly Nikolaev
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
The Morpho-syntactic Annotation of Animacy for a Dependency Parser
Mohammed Attia | Vitaly Nikolaev | Ali Elkahky
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

Search
Co-authors
Venues
Fix data