Vittorio Castelli


pdf bib
Multi-Stage Pre-training for Low-Resource Domain Adaptation
Rong Zhang | Revanth Gangi Reddy | Md Arafat Sultan | Vittorio Castelli | Anthony Ferritto | Radu Florian | Efsun Sarioglu Kayi | Salim Roukos | Avi Sil | Todd Ward
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Transfer learning techniques are particularly useful for NLP tasks where a sizable amount of high-quality annotated data is difficult to obtain. Current approaches directly adapt a pretrained language model (LM) on in-domain text before fine-tuning to downstream tasks. We show that extending the vocabulary of the LM with domain-specific terms leads to further gains. To a bigger effect, we utilize structure in the unlabeled data to create auxiliary synthetic tasks, which helps the LM transfer to downstream tasks. We apply these approaches incrementally on a pretrained Roberta-large LM and show considerable performance gain on three tasks in the IT domain: Extractive Reading Comprehension, Document Ranking and Duplicate Question Detection.

pdf bib
The TechQA Dataset
Vittorio Castelli | Rishav Chakravarti | Saswati Dana | Anthony Ferritto | Radu Florian | Martin Franz | Dinesh Garg | Dinesh Khandelwal | Scott McCarley | Michael McCawley | Mohamed Nasr | Lin Pan | Cezar Pendus | John Pitrelli | Saurabh Pujar | Salim Roukos | Andrzej Sakrajda | Avi Sil | Rosario Uceda-Sosa | Todd Ward | Rong Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We introduce TECHQA, a domain-adaptation question answering dataset for the technical support domain. The TECHQA corpus highlights two real-world issues from the automated customer support domain. First, it contains actual questions posed by users on a technical forum, rather than questions generated specifically for a competition or a task. Second, it has a real-world size – 600 training, 310 dev, and 490 evaluation question/answer pairs – thus reflecting the cost of creating large labeled datasets with actual data. Hence, TECHQA is meant to stimulate research in domain adaptation rather than as a resource to build QA systems from scratch. TECHQA was obtained by crawling the IBMDeveloper and DeveloperWorks forums for questions with accepted answers provided in an IBM Technote—a technical document that addresses a specific technical issue. We also release a collection of the 801,998 Technotes available on the web as of April 4, 2019 as a companion resource that can be used to learn representations of the IT domain language.

pdf bib
On the Importance of Diversity in Question Generation for QA
Md Arafat Sultan | Shubham Chandel | Ramón Fernandez Astudillo | Vittorio Castelli
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Automatic question generation (QG) has shown promise as a source of synthetic training data for question answering (QA). In this paper we ask: Is textual diversity in QG beneficial for downstream QA? Using top-p nucleus sampling to derive samples from a transformer-based question generator, we show that diversity-promoting QG indeed provides better QA training than likelihood maximization approaches such as beam search. We also show that standard QG evaluation metrics such as BLEU, ROUGE and METEOR are inversely correlated with diversity, and propose a diversity-aware intrinsic measure of overall QG quality that correlates well with extrinsic evaluation on QA.

pdf bib
Scalable Cross-lingual Treebank Synthesis for Improved Production Dependency Parsers
Yousef El-Kurdi | Hiroshi Kanayama | Efsun Sarioglu Kayi | Vittorio Castelli | Todd Ward | Radu Florian
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track

We present scalable Universal Dependency (UD) treebank synthesis techniques that exploit advances in language representation modeling which leverage vast amounts of unlabeled general-purpose multilingual text. We introduce a data augmentation technique that uses synthetic treebanks to improve production-grade parsers. The synthetic treebanks are generated using a state-of-the-art biaffine parser adapted with pretrained Transformer models, such as Multilingual BERT (M-BERT). The new parser improves LAS by up to two points on seven languages. The production models’ LAS performance improves as the augmented treebanks scale in size, surpassing performance of production models trained on originally annotated UD treebanks.

pdf bib
Answer Span Correction in Machine Reading Comprehension
Revanth Gangi Reddy | Md Arafat Sultan | Efsun Sarioglu Kayi | Rong Zhang | Vittorio Castelli | Avi Sil
Findings of the Association for Computational Linguistics: EMNLP 2020

Answer validation in machine reading comprehension (MRC) consists of verifying an extracted answer against an input context and question pair. Previous work has looked at re-assessing the “answerability” of the question given the extracted answer. Here we address a different problem: the tendency of existing MRC systems to produce partially correct answers when presented with answerable questions. We explore the nature of such errors and propose a post-processing correction method that yields statistically significant performance improvements over state-of-the-art MRC systems in both monolingual and multilingual evaluation.


pdf bib
CFO: A Framework for Building Production NLP Systems
Rishav Chakravarti | Cezar Pendus | Andrzej Sakrajda | Anthony Ferritto | Lin Pan | Michael Glass | Vittorio Castelli | J. William Murdock | Radu Florian | Salim Roukos | Avi Sil
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

This paper introduces a novel orchestration framework, called CFO (Computation Flow Orchestrator), for building, experimenting with, and deploying interactive NLP (Natural Language Processing) and IR (Information Retrieval) systems to production environments. We then demonstrate a question answering system built using this framework which incorporates state-of-the-art BERT based MRC (Machine Reading Com- prehension) with IR components to enable end-to-end answer retrieval. Results from the demo system are shown to be high quality in both academic and industry domain specific settings. Finally, we discuss best practices when (pre-)training BERT based MRC models for production systems. Screencast links: - Short video (< 3 min): http: // - Supplementary long video (< 13 min):

pdf bib
Cross-Task Knowledge Transfer for Query-Based Text Summarization
Elozino Egonmwan | Vittorio Castelli | Md Arafat Sultan
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

We demonstrate the viability of knowledge transfer between two related tasks: machine reading comprehension (MRC) and query-based text summarization. Using an MRC model trained on the SQuAD1.1 dataset as a core system component, we first build an extractive query-based summarizer. For better precision, this summarizer also compresses the output of the MRC model using a novel sentence compression technique. We further leverage pre-trained machine translation systems to abstract our extracted summaries. Our models achieve state-of-the-art results on the publicly available CNN/Daily Mail and Debatepedia datasets, and can serve as simple yet powerful baselines for future systems. We also hope that these results will encourage research on transfer learning from large MRC corpora to query-based summarization.


pdf bib
IBM Research at the CoNLL 2018 Shared Task on Multilingual Parsing
Hui Wan | Tahira Naseem | Young-Suk Lee | Vittorio Castelli | Miguel Ballesteros
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

This paper presents the IBM Research AI submission to the CoNLL 2018 Shared Task on Parsing Universal Dependencies. Our system implements a new joint transition-based parser, based on the Stack-LSTM framework and the Arc-Standard algorithm, that handles tokenization, part-of-speech tagging, morphological tagging and dependency parsing in one single model. By leveraging a combination of character-based modeling of words and recursive composition of partially built linguistic structures we qualified 13th overall and 7th in low resource. We also present a new sentence segmentation neural architecture based on Stack-LSTMs that was the 4th best overall.


pdf bib
A Joint Model for Answer Sentence Ranking and Answer Extraction
Md Arafat Sultan | Vittorio Castelli | Radu Florian
Transactions of the Association for Computational Linguistics, Volume 4

Answer sentence ranking and answer extraction are two key challenges in question answering that have traditionally been treated in isolation, i.e., as independent tasks. In this article, we (1) explain how both tasks are related at their core by a common quantity, and (2) propose a simple and intuitive joint probabilistic model that addresses both via joint computation but task-specific application of that quantity. In our experiments with two TREC datasets, our joint model substantially outperforms state-of-the-art systems in both tasks.


pdf bib
Query-Focused Opinion Summarization for User-Generated Content
Lu Wang | Hema Raghavan | Claire Cardie | Vittorio Castelli
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers


pdf bib
A Sentence Compression Based Framework to Query-Focused Multi-Document Summarization
Lu Wang | Hema Raghavan | Vittorio Castelli | Radu Florian | Claire Cardie
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Finding What Matters in Questions
Xiaoqiang Luo | Hema Raghavan | Vittorio Castelli | Sameer Maskey | Radu Florian
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies


pdf bib
Event Matching Using the Transitive Closure of Dependency Relations
Daniel M. Bikel | Vittorio Castelli
Proceedings of ACL-08: HLT, Short Papers