Vlada Rozova
2023
CRF-based recognition of invasive fungal infection concepts in CHIFIR clinical reports
Yang Meng
|
Vlada Rozova
|
Karin Verspoor
Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association
Named entity recognition (NER) in clinical documentation is often hindered by the use of highly specialised terminology, variation in language used to express medical findings and general scarcity of high-quality data available for training. This short paper compares a Conditional Random Fields model to the previously established dictionary-based approach and evaluates its ability to extract information from a small corpus of annotated pathology reports. The results suggest that including token descriptors as well as contextual features significantly improves precision on several concept categories while maintaining the same level of recall.
Natural Language Processing for Clinical Text
Vlada Rozova
|
Jinghui Liu
|
Mike Conway
Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association
Learning from real-world clinical data has potential to promote the quality of care, improve the efficiency of healthcare systems, and support clinical research. As a large proportion of clinical information is recorded only in unstructured free-text format, applying NLP to process and understand the vast amount of clinical text generated in clinical encounters is essential. However, clinical text is known to be highly ambiguous, it contains complex professional terms requiring clinical expertise to understand and annotate, and it is written in different clinical contexts with distinct purposes. All these factors together make clinical NLP research both rewarding and challenging. In this tutorial, we will discuss the characteristics of clinical text and provide an overview of some of the tools and methods used to process it. We will also present a real-world example to show the effectiveness of different NLP methods in processing and understanding clinical text. Finally, we will discuss the strengths and limitations of large language models and their applications, evaluations, and extensions in clinical NLP.