Vladimir Araujo


2023

pdf bib
A Memory Model for Question Answering from Streaming Data Supported by Rehearsal and Anticipation of Coreference Information
Vladimir Araujo | Alvaro Soto | Marie-Francine Moens
Findings of the Association for Computational Linguistics: ACL 2023

Existing question answering methods often assume that the input content (e.g., documents or videos) is always accessible to solve the task. Alternatively, memory networks were introduced to mimic the human process of incremental comprehension and compression of the information in a fixed-capacity memory. However, these models only learn how to maintain memory by backpropagating errors in the answers through the entire network. Instead, it has been suggested that humans have effective mechanisms to boost their memorization capacities, such as rehearsal and anticipation. Drawing inspiration from these, we propose a memory model that performs rehearsal and anticipation while processing inputs to memorize important information for solving question answering tasks from streaming data. The proposed mechanisms are applied self-supervised during training through masked modeling tasks focused on coreference information. We validate our model on a short-sequence (bAbI) dataset as well as large-sequence textual (NarrativeQA) and video (ActivityNet-QA) question answering datasets, where it achieves substantial improvements over previous memory network approaches. Furthermore, our ablation study confirms the proposed mechanisms’ importance for memory models.

2022

pdf bib
ALBETO and DistilBETO: Lightweight Spanish Language Models
José Cañete | Sebastian Donoso | Felipe Bravo-Marquez | Andrés Carvallo | Vladimir Araujo
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In recent years there have been considerable advances in pre-trained language models, where non-English language versions have also been made available. Due to their increasing use, many lightweight versions of these models (with reduced parameters) have also been released to speed up training and inference times. However, versions of these lighter models (e.g., ALBERT, DistilBERT) for languages other than English are still scarce. In this paper we present ALBETO and DistilBETO, which are versions of ALBERT and DistilBERT pre-trained exclusively on Spanish corpora. We train several versions of ALBETO ranging from 5M to 223M parameters and one of DistilBETO with 67M parameters. We evaluate our models in the GLUES benchmark that includes various natural language understanding tasks in Spanish. The results show that our lightweight models achieve competitive results to those of BETO (Spanish-BERT) despite having fewer parameters. More specifically, our larger ALBETO model outperforms all other models on the MLDoc, PAWS-X, XNLI, MLQA, SQAC and XQuAD datasets. However, BETO remains unbeaten for POS and NER. As a further contribution, all models are publicly available to the community for future research.

pdf bib
Evaluation Benchmarks for Spanish Sentence Representations
Vladimir Araujo | Andrés Carvallo | Souvik Kundu | José Cañete | Marcelo Mendoza | Robert E. Mercer | Felipe Bravo-Marquez | Marie-Francine Moens | Alvaro Soto
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Due to the success of pre-trained language models, versions of languages other than English have been released in recent years. This fact implies the need for resources to evaluate these models. In the case of Spanish, there are few ways to systematically assess the models’ quality. In this paper, we narrow the gap by building two evaluation benchmarks. Inspired by previous work (Conneau and Kiela, 2018; Chen et al., 2019), we introduce Spanish SentEval and Spanish DiscoEval, aiming to assess the capabilities of stand-alone and discourse-aware sentence representations, respectively. Our benchmarks include considerable pre-existing and newly constructed datasets that address different tasks from various domains. In addition, we evaluate and analyze the most recent pre-trained Spanish language models to exhibit their capabilities and limitations. As an example, we discover that for the case of discourse evaluation tasks, mBERT, a language model trained on multiple languages, usually provides a richer latent representation than models trained only with documents in Spanish. We hope our contribution will motivate a fairer, more comparable, and less cumbersome way to evaluate future Spanish language models.

pdf bib
How Relevant is Selective Memory Population in Lifelong Language Learning?
Vladimir Araujo | Helena Balabin | Julio Hurtado | Alvaro Soto | Marie-Francine Moens
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Lifelong language learning seeks to have models continuously learn multiple tasks in a sequential order without suffering from catastrophic forgetting. State-of-the-art approaches rely on sparse experience replay as the primary approach to prevent forgetting. Experience replay usually adopts sampling methods for the memory population; however, the effect of the chosen sampling strategy on model performance has not yet been studied. In this paper, we investigate how relevant the selective memory population is in the lifelong learning process of text classification and question-answering tasks. We found that methods that randomly store a uniform number of samples from the entire data stream lead to high performances, especially for low memory size, which is consistent with computer vision studies.

pdf bib
DACT-BERT: Differentiable Adaptive Computation Time for an Efficient BERT Inference
Cristobal Eyzaguirre | Felipe del Rio | Vladimir Araujo | Alvaro Soto
Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP

Large-scale pre-trained language models have shown remarkable results in diverse NLP applications. However, these performance gains have been accompanied by a significant increase in computation time and model size, stressing the need to develop new or complementary strategies to increase the efficiency of these models. This paper proposes DACT-BERT, a differentiable adaptive computation time strategy for BERT-like models. DACT-BERT adds an adaptive computational mechanism to BERT’s regular processing pipeline, which controls the number of Transformer blocks that need to be executed at inference time. By doing this, the model learns to combine the most appropriate intermediate representations for the task at hand. Our experiments demonstrate that our approach, when compared to the baselines, excels on a reduced computational regime and is competitive in other less restrictive ones. Code available at https://github.com/ceyzaguirre4/dact_bert.

2021

pdf bib
Stress Test Evaluation of Biomedical Word Embeddings
Vladimir Araujo | Andrés Carvallo | Carlos Aspillaga | Camilo Thorne | Denis Parra
Proceedings of the 20th Workshop on Biomedical Language Processing

The success of pretrained word embeddings has motivated their use in the biomedical domain, with contextualized embeddings yielding remarkable results in several biomedical NLP tasks. However, there is a lack of research on quantifying their behavior under severe “stress” scenarios. In this work, we systematically evaluate three language models with adversarial examples – automatically constructed tests that allow us to examine how robust the models are. We propose two types of stress scenarios focused on the biomedical named entity recognition (NER) task, one inspired by spelling errors and another based on the use of synonyms for medical terms. Our experiments with three benchmarks show that the performance of the original models decreases considerably, in addition to revealing their weaknesses and strengths. Finally, we show that adversarial training causes the models to improve their robustness and even to exceed the original performance in some cases.

pdf bib
Augmenting BERT-style Models with Predictive Coding to Improve Discourse-level Representations
Vladimir Araujo | Andrés Villa | Marcelo Mendoza | Marie-Francine Moens | Alvaro Soto
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Current language models are usually trained using a self-supervised scheme, where the main focus is learning representations at the word or sentence level. However, there has been limited progress in generating useful discourse-level representations. In this work, we propose to use ideas from predictive coding theory to augment BERT-style language models with a mechanism that allows them to learn suitable discourse-level representations. As a result, our proposed approach is able to predict future sentences using explicit top-down connections that operate at the intermediate layers of the network. By experimenting with benchmarks designed to evaluate discourse-related knowledge using pre-trained sentence representations, we demonstrate that our approach improves performance in 6 out of 11 tasks by excelling in discourse relationship detection.

2020

bib
Translating Natural Language Instructions for Behavioral Robot Navigation with a Multi-Head Attention Mechanism
Patricio Cerda-Mardini | Vladimir Araujo | Álvaro Soto
Proceedings of the Fourth Widening Natural Language Processing Workshop

We propose a multi-head attention mechanism as a blending layer in a neural network model that translates natural language to a high level behavioral language for indoor robot navigation. We follow the framework established by (Zang et al., 2018a) that proposes the use of a navigation graph as a knowledge base for the task. Our results show significant performance gains when translating instructions on previously unseen environments, therefore, improving the generalization capabilities of the model.

pdf bib
Stress Test Evaluation of Transformer-based Models in Natural Language Understanding Tasks
Carlos Aspillaga | Andrés Carvallo | Vladimir Araujo
Proceedings of the Twelfth Language Resources and Evaluation Conference

There has been significant progress in recent years in the field of Natural Language Processing thanks to the introduction of the Transformer architecture. Current state-of-the-art models, via a large number of parameters and pre-training on massive text corpus, have shown impressive results on several downstream tasks. Many researchers have studied previous (non-Transformer) models to understand their actual behavior under different scenarios, showing that these models are taking advantage of clues or failures of datasets and that slight perturbations on the input data can severely reduce their performance. In contrast, recent models have not been systematically tested with adversarial-examples in order to show their robustness under severe stress conditions. For that reason, this work evaluates three Transformer-based models (RoBERTa, XLNet, and BERT) in Natural Language Inference (NLI) and Question Answering (QA) tasks to know if they are more robust or if they have the same flaws as their predecessors. As a result, our experiments reveal that RoBERTa, XLNet and BERT are more robust than recurrent neural network models to stress tests for both NLI and QA tasks. Nevertheless, they are still very fragile and demonstrate various unexpected behaviors, thus revealing that there is still room for future improvement in this field.