Vladislav Mikhailov


pdf bib
Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP
Tatiana Shavrina | Vladislav Mikhailov | Valentin Malykh | Ekaterina Artemova | Oleg Serikov | Vitaly Protasov
Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP


pdf bib
Shaking Syntactic Trees on the Sesame Street: Multilingual Probing with Controllable Perturbations
Ekaterina Taktasheva | Vladislav Mikhailov | Ekaterina Artemova
Proceedings of the 1st Workshop on Multilingual Representation Learning

Recent research has adopted a new experimental field centered around the concept of text perturbations which has revealed that shuffled word order has little to no impact on the downstream performance of Transformer-based language models across many NLP tasks. These findings contradict the common understanding of how the models encode hierarchical and structural information and even question if the word order is modeled with position embeddings. To this end, this paper proposes nine probing datasets organized by the type of controllable text perturbation for three Indo-European languages with a varying degree of word order flexibility: English, Swedish and Russian. Based on the probing analysis of the M-BERT and M-BART models, we report that the syntactic sensitivity depends on the language and model pre-training objectives. We also find that the sensitivity grows across layers together with the increase of the perturbation granularity. Last but not least, we show that the models barely use the positional information to induce syntactic trees from their intermediate self-attention and contextualized representations.

pdf bib
RuSentEval: Linguistic Source, Encoder Force!
Vladislav Mikhailov | Ekaterina Taktasheva | Elina Sigdel | Ekaterina Artemova
Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing

The success of pre-trained transformer language models has brought a great deal of interest on how these models work, and what they learn about language. However, prior research in the field is mainly devoted to English, and little is known regarding other languages. To this end, we introduce RuSentEval, an enhanced set of 14 probing tasks for Russian, including ones that have not been explored yet. We apply a combination of complementary probing methods to explore the distribution of various linguistic properties in five multilingual transformers for two typologically contrasting languages – Russian and English. Our results provide intriguing findings that contradict the common understanding of how linguistic knowledge is represented, and demonstrate that some properties are learned in a similar manner despite the language differences.

pdf bib
Morph Call: Probing Morphosyntactic Content of Multilingual Transformers
Vladislav Mikhailov | Oleg Serikov | Ekaterina Artemova
Proceedings of the Third Workshop on Computational Typology and Multilingual NLP

The outstanding performance of transformer-based language models on a great variety of NLP and NLU tasks has stimulated interest in exploration of their inner workings. Recent research has been primarily focused on higher-level and complex linguistic phenomena such as syntax, semantics, world knowledge and common-sense. The majority of the studies is anglocentric, and little remains known regarding other languages, specifically their morphosyntactic properties. To this end, our work presents Morph Call, a suite of 46 probing tasks for four Indo-European languages of different morphology: Russian, French, English and German. We propose a new type of probing tasks based on detection of guided sentence perturbations. We use a combination of neuron-, layer- and representation-level introspection techniques to analyze the morphosyntactic content of four multilingual transformers, including their understudied distilled versions. Besides, we examine how fine-tuning on POS-tagging task affects the probing performance.

pdf bib
Artificial Text Detection via Examining the Topology of Attention Maps
Laida Kushnareva | Daniil Cherniavskii | Vladislav Mikhailov | Ekaterina Artemova | Serguei Barannikov | Alexander Bernstein | Irina Piontkovskaya | Dmitri Piontkovski | Evgeny Burnaev
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The impressive capabilities of recent generative models to create texts that are challenging to distinguish from the human-written ones can be misused for generating fake news, product reviews, and even abusive content. Despite the prominent performance of existing methods for artificial text detection, they still lack interpretability and robustness towards unseen models. To this end, we propose three novel types of interpretable topological features for this task based on Topological Data Analysis (TDA) which is currently understudied in the field of NLP. We empirically show that the features derived from the BERT model outperform count- and neural-based baselines up to 10% on three common datasets, and tend to be the most robust towards unseen GPT-style generation models as opposed to existing methods. The probing analysis of the features reveals their sensitivity to the surface and syntactic properties. The results demonstrate that TDA is a promising line with respect to NLP tasks, specifically the ones that incorporate surface and structural information.


pdf bib
Read and Reason with MuSeRC and RuCoS: Datasets for Machine Reading Comprehension for Russian
Alena Fenogenova | Vladislav Mikhailov | Denis Shevelev
Proceedings of the 28th International Conference on Computational Linguistics

The paper introduces two Russian machine reading comprehension (MRC) datasets, called MuSeRC and RuCoS, which require reasoning over multiple sentences and commonsense knowledge to infer the answer. The former follows the design of MultiRC, while the latter is a counterpart of the ReCoRD dataset. The datasets are included in RussianSuperGLUE, the Russian general language understanding benchmark. We provide a comparative analysis and demonstrate that the proposed tasks are relatively more complex as compared to the original ones for English. Besides, performance results of human solvers and BERT-based models show that MuSeRC and RuCoS represent a challenge for recent advanced neural models. We thus hope to facilitate research in the field of MRC for Russian and prompt the study of multi-hop reasoning in a cross-lingual scenario.

pdf bib
RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark
Tatiana Shavrina | Alena Fenogenova | Emelyanov Anton | Denis Shevelev | Ekaterina Artemova | Valentin Malykh | Vladislav Mikhailov | Maria Tikhonova | Andrey Chertok | Andrey Evlampiev
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this paper, we introduce an advanced Russian general language understanding evaluation benchmark – Russian SuperGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from scratch for the Russian language. We also provide baselines, human level evaluation, open-source framework for evaluating models, and an overall leaderboard of transformer models for the Russian language. Besides, we present the first results of comparing multilingual models in the translated diagnostic test set and offer the first steps to further expanding or assessing State-of-the-art models independently of language.

pdf bib
Humans Keep It One Hundred: an Overview of AI Journey
Tatiana Shavrina | Anton Emelyanov | Alena Fenogenova | Vadim Fomin | Vladislav Mikhailov | Andrey Evlampiev | Valentin Malykh | Vladimir Larin | Alex Natekin | Aleksandr Vatulin | Peter Romov | Daniil Anastasiev | Nikolai Zinov | Andrey Chertok
Proceedings of the 12th Language Resources and Evaluation Conference

Artificial General Intelligence (AGI) is showing growing performance in numerous applications - beating human performance in Chess and Go, using knowledge bases and text sources to answer questions (SQuAD) and even pass human examination (Aristo project). In this paper, we describe the results of AI Journey, a competition of AI-systems aimed to improve AI performance on knowledge bases, reasoning and text generation. Competing systems pass the final native language exam (in Russian), including versatile grammar tasks (test and open questions) and an essay, achieving a high score of 69%, with 68% being an average human result. During the competition, a baseline for the task and essay parts was proposed, and 80+ systems were submitted, showing different approaches to task understanding and reasoning. All the data and solutions can be found on github https://github.com/sberbank-ai/combined_solution_aij2019


pdf bib
Initial Experiments In Cross-Lingual Morphological Analysis Using Morpheme Segmentation
Vladislav Mikhailov | Lorenzo Tosi | Anastasia Khorosheva | Oleg Serikov
Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects

The paper describes initial experiments in data-driven cross-lingual morphological analysis of open-category words using a combination of unsupervised morpheme segmentation, annotation projection and an LSTM encoder-decoder model with attention. Our algorithm provides lemmatisation and morphological analysis generation for previously unseen low-resource language surface forms with only annotated data on the related languages given. Despite the inherently lossy annotation projection, we achieved the best lemmatisation F1-score in the VarDial 2019 Shared Task on Cross-Lingual Morphological Analysis for both Karachay-Balkar (Turkic languages, agglutinative morphology) and Sardinian (Romance languages, fusional morphology).