Walter Laurito


2024

pdf bib
Cluster-Norm for Unsupervised Probing of Knowledge
Walter Laurito | Sharan Maiya | Grégoire Dhimoïla | Owen Yeung | Kaarel Hänni
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The deployment of language models brings challenges in generating reliable text, especially when these models are fine-tuned with human preferences. To extract the encoded knowledge in these models without (potentially) biased human labels, unsupervised probing techniques like Contrast-Consistent Search (CCS) have been developed (Burns et al., 2022). However, salient but unrelated features in activation space can mislead these probes (Farquhar et al., 2023). Addressing this, we propose a cluster-normalization method to minimize the impact of such features by clustering and normalizing activations of contrast pairs before applying unsupervised probing techniques. While this approach does not address the issue of distinguishing between latent knowledge and that portrayed by a simulated agent—a major issue in the literature of eliciting latent knowledge (Paul Christiano and Xu, 2021)—it still significantly improves the accuracy of probes in identifying the intended knowledge amidst distractions.

2022

pdf bib
AIFB-WebScience at SemEval-2022 Task 12: Relation Extraction First - Using Relation Extraction to Identify Entities
Nicholas Popovic | Walter Laurito | Michael Färber
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

In this paper, we present an end-to-end joint entity and relation extraction approach based on transformer-based language models. We apply the model to the task of linking mathematical symbols to their descriptions in LaTeX documents. In contrast to existing approaches, which perform entity and relation extraction in sequence, our system incorporates information from relation extraction into entity extraction. This means that the system can be trained even on data sets where only a subset of all valid entity spans is annotated. We provide an extensive evaluation of the proposed system and its strengths and weaknesses. Our approach, which can be scaled dynamically in computational complexity at inference time, produces predictions with high precision and reaches 3rd place in the leaderboard of SemEval-2022 Task 12. For inputs in the domain of physics and math, it achieves high relation extraction macro F1 scores of 95.43% and 79.17%, respectively. The code used for training and evaluating our models is available at: https://github.com/nicpopovic/RE1st